
CLASSICAL MECHANICS

Michaelmas Term 2006

4 Lectures Prof M. Brouard

Atoms and molecules

Classical versus quantum mechanics

Classical motions of small groups of isolated atoms and molecules

‘Theoretical chemistry is in fact physics’ 1

Richard Feynman
Lectures on Physics

1He also said ‘Inorganic Chemistry is, as a science, now reduced to physical chemistry and quantum
chemistry.’

Types of Motion (The things molecules do!)

Translation (lectures 1,2)

Rotation (lecture 3)

Vibration (lecture 4)

What is motion?
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LECTURE 1: Translational Motion

Motion of a particle in One Dimension (along x)

Position (coordinates) [Units: m]

rx(t)
rx

x0

Velocity [Units: m s−1]

vx(t) =
drx

dt
≡ ṙx

x

t

Acceleration [Units: m s−2]

ax(t) =
dvx

dt
=

d2rx

dt2
≡ r̈x

r, v and a define the motion or trajectory of a particle.

SEE EXAMPLES 1 AND 2

Equations of motion for constant acceleration

Acceleration

ax(t) = a

Velocity

vx(t) = v0 + at

Position

rx(t) = r0 + v0t + 1
2
at2

EXAMPLE: Close to the earth’s surface the acceleration due to gravity,
g, is approximately constant.

t = 0
1

2

3

r gtx =  /
1 2

2
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An Aside - Vectors

A quantity with both magnitude and direction.

EXAMPLE (in two dimensions):

Position r (of magnitude r and direction θ with respect to the x axis)

Components

rx = r cos θ
ry = r sin θ

Magnitude

r =
√

(r2
x + r2

y)

Direction

tan θ =
ry

rx

y

x

r

rx

ry

Vector Addition 2

r = a + b

r

a
b

i.e.

rx = ax + bx ry = ay + by

2Products of vectors may also be defined - see Maths Course.

Motion in three dimensions

Resolve the motion along three Cartesian coordinates

x y

z

r

For constant acceleration

ax(t) = ax ay(t) = ay

vx(t) = vx0 + axt vy(t) = vy0 + ayt

rx(t) = rx0 + vx0t + 1
2
axt

2 ry(t) = ry0 + vy0t + 1
2
ayt

2

az(t) = az

vz(t) = vz0 + azt

rz(t) = rz0 + vz0t + 1
2
azt

2

These three sets of equations can be written more neatly using vectors
(see Aside)

a(t) = a

v(t) = v0 + at

r(t) = r0 + v0t + 1
2
at2

SEE EXAMPLE 3
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Newton’s Laws of motion

What do the laws tell us?

They enable us to predict the motion of particles.

1st law

Tells us what happens when we leave an object alone, i.e. in the absence
of forces.

2nd Law

Tells us how to calculate the change in motion of an object if it is not left
alone, i.e. how forces change motion.

3rd Law

Tells us a little about forces and how they operate (next lecture).

Are the laws correct?

NO! But they are often a very good approximation.

1.) Every body continues in its state of rest or uniform motion
in a straight line unless it is compelled to change by forces
impressed upon it.

Changes in velocity (i.e. acceleration) arise from forces.

v

F
(See Lecture 3)

No force, F , implies no acceleration. (Suggests F ∝ a?)

v

What is the relationship between force and acceleration?
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Inertia and Mass

Inertia is the tendency to resist change in the state of motion.

Mass is the measure of inertia.

The mass of an object quantifies how difficult it is to change the magnitude
or direction of its velocity.

v

small M

small F

v

large M

large F

Determining relative mass

m1 m1 m1 m1

v1 v1

m2 m2 m2 m2

v2 v2

spring released

2.) The force, F, acting on a particle of mass m produces an
acceleration a = F/m in the direction of the force:

F = ma Units: N ≡ kgm s−2

Force is a vector quantity

Fx = max Fy = may Fz = maz

x y

z

F || a

If more than one force, then the net (or resultant) force,
∑

i Fi, determines
the acceleration of the particle:

∑

i Fi = ma

mg (gravity)

Fair (air resistance)

F = F mg - FSi airi =

If we know the force we can calculate the particle’s motion!

SEE EXAMPLE 4
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LECTURE 2: Momentum and energy conservation

Types of forces

To use Newton’s Laws we need to know more about the forces.

We need formulae for the forces.

Frictional Forces
R

Molecular Forces

F

R

repulsion

attraction

Fundamental Forces (Interactions)

Interaction Relative Range Comments

strength

Strong 1 10−15 m Holds nucleus together

Electromagnetic 10−2 Infinite Chemistry and most everyday forces

Weak 10−6 10−17 m Associated with radioactivity

Gravitational 10−38 Infinite Causes apples to fall on earth

The electrostatic force between an electron and a proton in the
H atom exceeds gravitation by ∼ 1040!

1. Gravitation Force:

The gravitational force between point or spherical masses, m and M , is

F = −

GmM

r2
G = 6.67 × 10−11 N m2 kg−2

The weight, w, of an object is the net gravitational force acting on it.

For objects close to the earth’s surface (r = Re):

w = mg g =
GMe

R2
e

≃ 9.8 m s−2
Re

earth

where g is the acceleration due to gravity.

2. Coulomb Force:

In a vacuum, the Coulomb force between point or spherical charges, q and
Q, is (see Electrostatics Lectures)

F =
qQ

4πǫ0r2

1

4πǫ0
= 9.0 × 109 N m2 C−2

Unlike gravity (which is always attractive), the Coulomb force can be
either attractive (< 0) or repulsive (> 0) depending on the sign of the
charges.
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Newton’s 3rd Law: A general law for the forces

3.) The force exerted on a body A by body B is equal and
opposite to the force exerted on B by A.

FAB = −FBA

Forces act on bodies (if there is no matter there is no force).

Forces come in pairs, i.e. a force is exerted by one body on another body

FEA

earth

FAE

apple

FAE = −FEA

mA aA = −ME aE

aA = −ME/mA aE

Note that
ME

mA

∼ 1024

Linear Momentum

Definition

p = mv

p large

v
m

p small

v
m

Newton’s Second Law (for single force F) can be expressed in terms of
the linear momentum :

F = ma = m
dv

dt
≡

dp

dt
,

where it is been assumed that the mass is time-independent. If there is
no force

F = 0 =
dp

dt
i.e. p = constant

If the net force is zero the momentum is constant.
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Conservation of Linear Momentum

F21
F12

+ -
no external forces

Using Newton’s 3rd Law

F12 = −F21

Using Newton’s 2nd Law

dp1

dt
+

dp2

dt
= 0

Integrating

∆p1 + ∆p2 = 0

where

∆p = p(t2) − p(t1) .

This implies that

p1 + p2 = constant

If the net external force on a system is zero, the total linear
momentum is constant.

SEE EXAMPLE 5

Energy and its conservation

‘There is a fact, or if you wish, a law, governing all natural
phenomena that are known to date. There is no known excep-
tion to this law - it is exact so far as we know. The law is
called conservation of energy.’

‘It states that there is a certain quantity, which we call energy,
that does not change in the manifold changes which nature
undergoes.’

Richard Feynman
Lectures on Physics

Kinetic Energy

Due to motion of particle

Potential Energy

Stored energy arising from position of particle

Heat energy

Due to the kinetic energies of atoms and molecules
(see Thermodynamics)
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Mechanical Work, W

Learn about energy by looking at work.

F
F = Fx cos q

s
q

s cos q

q

The mechanical work, W , done by a constant force, F , is

W = F s cos θ Units : Joule (J) ≡ N m

where s is the total displacement, and s cos θ is the displacement along
the direction of the force.3

If the displacement in the direction of the force is zero, no work is done.

If the force, Fx, is not constant, the mechanical work is defined

W =

∫ x2

x1

Fx dx

where dx is the infinitesimal displacement along x.

3In vector notation, this equation can be written W = F · s (i.e. a scalar product of vectors).

Kinetic Energy, K

The kinetic energy, K, of a particle is the energy a particle
possesses by virtue of its motion.

For a particle of mass m moving along x with velocity vx

K = 1
2
mv2

x

frictionless surface

Return to the equation for the work done on a particle

W =

∫

dW =

∫

Fxdx

Use Newton’s 2nd Law to rewrite Fxdx = mvx dvx

W =

∫ v2

v1

mvx dvx = 1
2
m(v2

2 − v2
1)

The work done on the particle is equal to its change in kinetic energy4

W = ∆K

If an object is pushed it picks up speed

SEE EXAMPLE 6
4This is known as the work-energy theorem.
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Potential Energy, V .

The potential energy, V , is the energy associated with the po-
sition of a particle

Potential energy may be thought of as stored energy, or the capacity to
do work.

EXAMPLE

Harmonic Spring

V (x) = 1
2
kx2

x

V x( )

low V

high V

Force, work, and potential energy

For some forces5, the work done by the force is independent of the path
taken.

1 high V

2 low V

force does
+ve work

For example, the infinitesimal work done dW by the gravitational force
F is independent of path

dW = F dx

In moving the particle from position 1 to 2 its capacity to do work is
reduced. The fixed amount of work is therefore minus the change
in potential energy:

dV = −dW

Combining these two equations yields

F = −

dV

dx

1

2

Therefore, the (finite) change in potential energy between points x1 and
x2 is

V (x2) − V (x1) = ∆V = −

∫ 2

1

Fx dx = − W

5They are called conservative forces, and include gravity and the Coulomb force. Conservative
forces can be represented by potential energy functions because they depend sôlely on position. For
non-conservative forces, such as friction, the work done and the force depends on the path taken.
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EXAMPLES of potential energy functions:

Harmonic spring potential

V (x) = 1
2
kx2

F (x) = −

dV

dx
= − kx

x

V x( )

0

Gravitational potential 6

V (r) = −

GmM

r

F (r) = −

dV

dr
= −

GmM

r2

V r( )

r

Coulomb potential (e.g., charges q and Q of the same sign)

V (r) =
qQ

4πǫ0r

F (r) = −

dV

dr
=

qQ

4πǫ0r2

V r( )

r

6Close to the earth this may be approximated by

V (h) ≃ mgh g = 9.8 ms−2 .

Conservation of Mechanical Energy7

As shown above, the work done by a force is related to changes in both
the kinetic and the potential energies:

W = ∆K = − ∆V

Rearranging the right side of this equation yields

∆K + ∆V = 0

Therefore, the sum of these energies, called the total energy, E, must be
constant:

E = K + V

x

V x( )

low V

high V

spring

low K

high K

SEE EXAMPLE 7
7Again we focus exclusively on conservative forces, i.e. those illustrated above, which may be

expressed in terms of a potential energy function.
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LECTURE 3: Rotational Motion

Systems of Particles and centre-of-mass

x y

z

ri

For each particle i

Fi = mi
d2ri

dt2

where ri and mi are the positions and masses of the constituent particles
in the system.

The total force on the system is

∑

i

Fi = F =
d2(

∑

i miri)

dt2

i.e. the total force F is the external force acting on the system.8

Define a quantity, called the centre-of-mass (CM)

rCM =

∑

miri

M

where M is the total mass. Substitute into equation for F yields

F = M
d2rCM

dt2
= MaCM

8This is true because all the internal forces between all pairs of particles in the system must cancel,
because of Newton’s 3rd Law.

Motion of the centre-of-mass

cm

mg

F = MaCM =
dpCM

dt

If the system of particles is isolated

F =
dpCM

dt
= 0

If the external force on a system of particles is zero, the mo-
mentum of the centre-of-mass is constant.

vcm (constant)

cm
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Centre-of-mass and relative motion - an aside

x y

z

rcm
r2

m2

m1

r2,rel

The position of each particle, i, can be written

ri = rCM + ri,rel (vector addition)

Multiply through by mi, and sum over all particles, i,
∑

i

miri = MrCM +
∑

i

miri,rel

But
∑

i

miri = MrCM

Therefore

∑

i

miri,rel = 0

Taking the time derivative of this expression yields

∑

i

pi,rel = 0

The sum of the momenta relative to the CM is zero.9

9You might also like to show that the total kinetic energy of the system can be factorized:

K =

X

Ki = KCM + Krel = 1

2
Mv2

CM +

X

1

2
miv

2

i,rel

where KCM is the kinetic energy associated with motion of the CM and Krel is the kinetic energy
associated with the internal motion relative to the CM.

Uniform Rotation of Rigid Bodies about a Fixed Axis

x

y

r s
q

The radian, θ, is defined by the equation

θ =
s

r

and the angular velocity, ω (units rad s−1), by the equation

ω =
dθ

dt

(

cf. v =
dr

dt

)

The rotational period, T , and rotational frequency, f are related to ω by
the equations

ω =
2π

T
= 2πf

For uniform circular motion, the angular velocity is constant (i.e.
zero angular acceleration) and one may write

θ = ωt

where it is assumed that at t = 0, θ = 0. We may thus write

rx = r cos θ = r cos (ωt)

ry = r sin θ = r sin (ωt)

with
r = (r2

x + r2
y)

1/2
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Taking the time derivative

vx = −rw sin (ωt)

vy = rw cos (ωt)

i.e.
v = r× ω

Finally, taking the time derivative a second time yields

ax = −rw2 cos (ωt)

ay = −rw2 sin (ωt)

or

ar = −rω2

r

v

ar

^

In vector notation, this may be written

ar = −rω2r̂ ≡ −

v2

r
r̂

Thus, for uniform circular motion, the centripetal acceleration points ra-
dially inwards along −r.

Centripetal (pointing centrally) acceleration is constant in magnitude but
not in direction. The magnitude of the centripetal force is

Fr =
mv2

r

Equations of Motion (non-uniform circular motion)

If a particle experiences a constant angular acceleration (leading to a
change in angular velocity)

dω

dt
= α Units rad s−2

then the equations of motion (from Newton’s laws) can be written

ω = ω0 + αt

θ = θ0 + ω0t + 1
2
αt2

(

cf. r = r0 + v0t + 1
2
at2

)

analogous to the equations for linear motion with constant linear acceler-
ation.

In the presence of angular acceleration, the net linear acceleration can be
written

a = ar + at

i.e.,

a =
√

a2
r + a2

t

at

ar

a

where the tangential (angular) acceleration, at, is

at = α × r

which is just the time derivative of v = r × ω.
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Rotational Kinetic Energy and Moments of Inertia

The kinetic energy of a particle, i, rotating with a constant angular fre-
quency ω about a fixed axis is (using v = rω, and dropping the ‘rel’ on
ri,rel)

Ki,ang = 1
2
miv

2
i = 1

2
mir

2
i ω

2

where ri is the particle’s distance from the axis of rotation.

For a system of particles all rotating with frequency ω, the rotational
(angular) kinetic energy is therefore

Kang =
∑

i

Ki,ang = 1
2

∑

mir
2
i ω

2

Defining the moment of inertia, I, as

I =
∑

mir
2
i

the rotational kinetic energy can be written

Kang = 1
2
Iω2

(

cf. Klin = 1
2
mv2

)

The moment of inertia plays a similar role in rotational motion as mass
does in linear motion.

The magnitude of I depends on the axis of rotation.

Classical rotation of diatomic molecules

m2
m1

r1

r

cm

For a diatomic molecule with a bondlength r, rotation must occur about
the CM10, and the moment of inertia can be written (using

∑

i miri = 0)

I =
∑

i mir
2
i = µr2 with µ = m1m2

m1+m2

In the absence of external forces on the molecule, the motion of the CM
is conserved, and the total kinetic energy of the molecule can be factored

K = KCM + Kang

vcm (constant)

cm

Because both atoms rotate with the same frequency ω about the CM, the
angular momentum and the angular kinetic energy of the molecule may
be written (see below)

l =
∑

i mir
2
i ω = Iω Kang = 1

2

∑

i mir
2
i ω

2 =
l2

2I

10Otherwise the motion of the centre-of-mass would not be uniform in the absence of external forces.
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Torque and Angular momentum

t

r
F

x

y

r
q

Consider the work done by force, F, on an object at fixed distance r from
the axis of rotation

dW = Fxdx + Fydy

or in angular coordinates (using dy = xdθ and dx = −ydθ)

dW = (xFy − yFx)dθ

This can be written

dW = τdθ ( cf. dW = Fxdx)

where the torque is defined

τ = (xFy − yFx) = r × F

Is it possible to define the torque in terms of a derivative of a
momentum, cf. F = dp/dt?

Try defining the angular momentum

L = r × p

Then taking the time derivative we obtain

dL

dt
= r × F = τ

i.e.

τ =
dL

dt
( cf. F = dp/dt)

Angular Momentum

For a particle with linear momentum p, located at position r, the magni-
tude of the angular momentum is defined

l = rp sin θ

where θ is the angle between r and p.

axis

r

q p

psinq

Angular momentum is a vector quantity

It is directed perpendicular to the plane of rotation (as defined by the
right hand rule). In vector notation

l = rp sin θ n̂ ≡ r × p
l

r
p

where the latter equation defines the vector product between the vectors
r and p. n̂ is a vector of unit length pointing at right angles (normal) to
the plane of rotation.

large l

r
p

small l

r
p
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1. Linear motion

For motion in straight line, the angular momentum about any point is
constant.

axis

r( )t

p (constant)

b

q b = rsinq

l = p r sin θ = p b = mv b = constant

2. Uniform motion in a circle

For uniform motion in a circle (i.e. no angular acceleration) p and v are
constant in magnitude and always directed perpendicular to r, and the
angular momentum has a constant magnitude

v

r

l = mvr = mr2ω = Iω (cf. p = mv)

Torque and angular momentum conservation

axis
r

q

F

l = rp sin θ n̂ = Iω

The time derivative of the angular momentum defines the torque exerted
on the system

τ =
dl

dt
= rF sin θ n̂ = Iα

t

r
F

This the rotational analogue of the linear equation

F =
dp

dt
= ma

If there is no external torque acting on a system, the total
angular momentum is constant in magnitude and direction.

SEE EXAMPLES 8-10

17



LECTURE 4: Vibrational Motion

Simple Harmonic Motion

Potential Energy:

V (x) = 1
2
kx2

where x is the displacement from the rest (or equilibrium) position, and
k is known as the force constant.

Force:11

F (x) = −dV (x)/dx = −kx ≡ − kx(t)

The minus sign indicates a restoring force.
x

V x( )

0

F F

Acceleration:

a = −

k

m
x(t) = −ω2x(t)

where

ω =

√

k

m

and is known as the angular frequency (for reasons given below).

Thus, the equation of motion for the simple harmonic oscillator is a second
order differential equation.

d2x

dt2
= −ω2x

11When applied to springs, this equation for the force is known as Hooke’s law and k is then referred
to as the spring constant.

We will just quote the solution:

x(t) = A sin (ωt + φ)

where φ determines the phase and A defines the amplitude of the oscilla-
tion.

x

t

T

f

A
Periodic motion

Taking the time derivative of x(t) yields the velocity v(t)

v(t) = Aω cos (ωt + φ)

and the second derivative gives the acceleration

a(t) = −Aω2 sin (ωt + φ) = −ω2x(t)

φ = 0

x

t

t

t

v

a
x

V x( )

0

a a

As with circular motion, the frequency, f , and period, T , are related to ω
by the equations

ω = 2πf =
2π

T
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An Aside:

Very similar equations arise for uniform circular motion, where the equa-
tion of motion is (see Lecture 3):

ar =
d2r

dt2
= −ω2r ≡ −rω2r̂

which can be resolved into x and y components

arx
=

d2rx

dt2
= −ω2rx

and

ary
=

d2ry

dt2
= −ω2ry

The solution to these equations is

rx = r cos (ωt) ≡ r sin (ωt + π/2)

ry = r sin (ωt)

x

y

r

q=wt

where the phase π/2 in the first equation is chosen so that r satisfies the
equation for motion confined to a circle

r =
√

r2
x + r2

y

Energy in Simple Harmonic Motion

Potential Energy:
V (t) = 1

2
kx2

x(t) = A sin (ωt + φ)

V (t) = 1
2
kA2 sin2 (ωt + φ)

Kinetic Energy:
K(t) = 1

2
mv2

v(t) = Aω cos (ωt + φ)

K(t) = 1
2
mA2ω2 cos2 (ωt + φ)

K(t) = 1
2
kA2 cos2 (ωt + φ)

Total Energy:
E = K + V

E = 1
2
kA2

[

sin2 (ωt + φ) + cos2 (ωt + φ)
]

= 1
2
kA2

The vibrational frequency of a harmonic oscillator is independent of the
total energy.

V x( )

Energy
E

V K

x0 t

E
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Vibration of a diatomic molecule

vcm (constant)

cm

V r( )

real

harmonic

r

m2
m1

x1 re

cm

x2

r

In the absence of external forces the motion of the CM can be factored
from the relative motion of the two atoms. The latter is the time depen-
dent bondlength of the molecule:

r = r1 − r2 = x + re where x = x1 − x2

and re is the equilibrium bond length of the molecule. Taking the second
derivative with respect to time

a = a1 − a2 = ẍ

Using Newton’s 3rd Law

F1 = −F2 = −kx

Therefore

a = a1 − a2 =
(

−kx
m1

−
kx
m2

)

= −
k
µ

x = −ω2x

where

µ =
m1m2

(m1 + m2)
and ω =

√

k

µ

m

µ is the effective mass of the oscillator and ω is its angular
frequency.

SEE EXAMPLE 11

Travelling Waves

Travelling harmonic waves possess two periodicities, one in
position and one in time:

y(x′) = A sin kx′ Fixed time

where k (NOT to be confused with the force constant) is known as the
wave number, i.e. the number of waves per meter in units of radm−1,

k =
2π

λ

and
y(t) = A sin wt Fixed position

with

ω =
2π

T
= 2πf

as previously.

y

x

x

y

t1

t2

x’

y’

x’

y’

vt2

x′ = x − vt
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For a wave travelling with a constant wave velocity, v, any particular
feature, such as a crest, is defined by a fixed value of x′, where x′ refers to
the displacement with respect to a coordinate system travelling with the
wave. With respect to a stationary frame (the ground) the displacement
x, is related to x′ by

x′ = x − vt = constant

Substitution into the first equation yields

y(x, t) = A sin [k(x − vt) + φ] = A sin [kx − ωt + φ]

where the phase, φ, is defined at x = 0 and t = 0, and

v = fλ

such that

k v =
2π

λ
fλ = ω

Linear Wave Equation - an aside

Differentiate the wave function

y(x, t) = A sin [k(x − vt) + φ] = A sin [kx − ωt + φ]

with respect to t at fixed x twice (known as partial differentiation)

∂2y

∂t2
= −Aω2 sin [kx − ωt + φ] = −ω2y(x, t)

Repeat the (partial) differentiation of the wave function, but now with
respect to x at fixed t:

∂2y

∂x2
= −Ak2 sin [kx − ωt + φ] = −k2y(x, t)

Combining these two equations, making use of the definition of the wave
velocity, v, yields the linear wave equation

∂2y

∂x2
=

1

v2

∂2y

∂t2

where the partial derivative on the right side of the equation is the accel-
eration of an element (particle) in the medium.
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Principle of Linear Superposition

Waves which satisfies the linear wave equation obey the principle
of linear superposition.

This states that the total wave function, ytot, is the linear sum of the
individual wave functions, yi:

ytot =
∑

i

yi

Constructive (destructive) interference occurs when two or more waves
add in (out of) phase such that the total displacement is greater (less)
than the displacements generated by the individual waves.

+ =

+ =

constructive

destructive

Interference is an important phenomenon in Quantum Mechanics, and in
Optics (e.g., diffraction).

Standing Waves

A standing wave may be constructed by superposition of two harmonic
waves, of equal amplitude and frequency, travelling in opposite directions.

Setting the phase of each wave to zero, yields the superposition wave

y(x, t) = A sin (kx − ωt) + A sin (kx + ωt)

which, using the identity

sin A + sin B = 2 sin [(A + B)/2] cos [(A − B)/2]

reduces to

y(x, t) = 2A cos (ωt) sin (kx) ≡ A(t) sin (kx)

The latter equation shows that for a standing wave the amplitude varies
with time, but the phase of the oscillation along x is invariant with time.

y

x

t1

t2

t3
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Resonant standing waves

These are produced when the standing wave is fixed at two points in space,
such as x = 0 and x = l.

An example is the wave motion generated in a stringed instrument.

The constraint imposes boundary conditions to the wave motion

y(x = 0, t) = A(t) sin (k0) = 0

y(l, t) = A(t) sin (kl) = 0

This can be fulfilled either by setting the amplitude A(t) = 0 (which
means the wave no longer exists), or by the constraint sin (kl) = 0, i.e.

kl = nπ n = 1, 2, 3, ... etc.

or

λ =
2l

n
(harmonics)

y

xL

n = 1

n = 3

n = 2

cf., matter waves

The behaviour is analogous to that of a quantum mechanical particle
confined to a box (see Physical Chemistry Lectures).

SEE EXAMPLE 12
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