Chapman chemistry, catalytic cycles: reminder

Source of catalysts, transport to stratosphere: reminder

Effect of major (O_2) and minor (N_2O, CH_4) biogenic gases on $[O_3]$: modulation of concentrations by biota. Note influence of UV **on** biota.

Man's perturbation of stratospheric ozone

Because of *catalytic* nature of cycles, small amounts of material introduced into the stratosphere could destroy much O_3 (and problem compounded by stability of stratosphere).

Reasons for concern:

Human health: skin cancer, immune system Vegetation, phytoplankton, etc Climate: radiative forcing Chemistry: altered UV intensities

Agriculture, use of land, biota

 CH_4 , NO_x (*via* N_2O) influences

Stratospheric aircraft

Direct injection: initial suggestions concerned H_2O , but soon rejected Engine emissions (242 kg NO hr⁻¹ or 118 000 l hr⁻¹) Return later to more recent analyses of aircraft problem

Chlorofluorocarbons

One of most worrying catalysts: chlorofluorocarbons and Cl_x , Br_x species $CF_2Cl_2 \rightarrow hv \rightarrow Cl \rightarrow CF_2Cl$ {Handout 2 shows: SOURCE; CYCLE; RESERVOIR; RELEASE (gas-phase)}

Constancy in troposphere, drop in stratosphere: photolysis. stability of CFCs; consumption and uses
CFC-11 concentration 1971 and 1979; CFC-11 and CFC-12 concentrations 1979-87
Controls and "alternatives": HFCs and HCFCs
Actual and projected Cl loadings for several scenarios
CFC emission scenarios and ozone depletions
[More detailed view of response of different Cl and Br species to Copenhagen]

Ozone concentrations and trends

Mid-latitude averages to May 1993; Arosa data Ozone trends as a function of latitude

Stratospheric ozone hole

BAS observations 1957-88 (+ some TOMS); BAS up to current year
Satellite observations TOMS (Nimbus 7); Octobers 1979–97; current year minima/area Why not seen earlier by TOMS!
Vertical profiles late August, early September 1987 (H6 is 1989)
1987 expedition: DC8, ER2 (cf balloons of last time)

I Meteorological factors	
Antarctic vortex	
PSCs	
II Observations of chemical composition	
Concentration measurements: 23/8/87 and 16/9/87 CIO and O ₃	
ClO enhancement, H_2O , NO_x depletion	
III Interpretation	
Reservoir chemistry altered in presence of PSCs	
Containment	
Chain regeneration of Cl involves ClO dimer photolysis; also BrO mechanisn	ns
Summary view of time evolution	
Potential for Arctic ozone depletion: chemistry results (AASE and EASOE)	
Arctic December 1999 – March 2000: (a) vortex-average ozone profile {blue would	d be
late March profile expected without loss}, and (b) ozone mixing ratio inside vortex.	
Importance of bromine	
Br as much as 50 times more destructive than Cl	
Natural and anthropogenic sources of Br: uncertainties	
Reasons for effectiveness of Br	
Non-occurrence of $Br + CH_4$ reaction	

Rapid conversion of reservoirs back to active Br BrO + BrO; BrO + ClO reactions (regeneration of Br *without* intervention of O)

Additional material

Surface reactions

Stratospheric aerosol layer (H_2SO_4) Mount Pinatubo and the Arctic campaigns: signatures of processing Effects of heterogeneous chemistry: eg $N_2O_5 + H_2O$ reaction

Aircraft and ozone revisited

Many aircraft already fly in lower stratosphere; new SSTs

Impact on stratospheric and tropospheric ozone levels

- Increased importance of HO_x in lower stratosphere with heterogeneous chemistry means that H_2O emission **might** be significant
- H_2O might also increase level of PSCs, and SO_2 and soot lead to increased sulphate aerosol as well as providing CCNs

Ozone and climate

Greenhouse heating: decreases in lowers stratospheric Ts, offsets Increased UV in troposphere may increase [OH]: increases in CH_4 stopped? Cooling of lower stratosphere \rightarrow PSCs \rightarrow ozone loss; above, losses reduced

Ozone and UV penetration

UV-B at surface

Antarctic: observed Elsewhere: lack of observational data and difficulties - calculations Variation with season and latitude; UK calculations

Atmospheric Chemistry III : Slides

G 25	Melanoma deaths v. latitude
G 80	Concorde (Gander, Sept 1975)
G 10	Concorde (Toulouse)
G 81	Stewardess at M2
G 82	Concorde in flight (cockpit)
G 84	Instruments c/u (altimeter)
W 17	Spray cans on globe - CFC introduction
RG 16	$CF_2Cl_2 + hv$
RG 71	Vertical dist. of CFC-11 (N mid-latitude)
W 36	Consumption and uses of CFCs to 1991
G 24	FC-11 concentrations in 1971 and 1979
RG 15 (W 18)	Increase in CFCs 1979-1987
W 40	Actual and projected atmospheric chlorine for several scenarios
W 43	Daily global ozone with 1993 to May (65N to 65S)
RG 27 (W 20)	Decline in October ozone 1956-1988
W 23	Ozone—Altitude profiles 15/8/87, 13/10/87
RG 31 (W 52)	DC8 (AT)
W 53	Instrumentation on DC8
RG 32 (W 49)	ER2 (AT)
W 51	Instrumentation on ER2
RG 38 (W 24)	Vortex over Antarctica
RG 36 (W 25)	Polar Stratospheric Clouds
W 26	Latitude dependence $[O_3]$, [ClO], late Aug & mid Sept 1987
RG 41 (W 18)	Summary of comp. through CPR
RG 43 (W 27)	Surface reactions on PSCs
	G 80 G 10 G 81 G 81 G 82 G 84 W 17 RG 16 RG 16 RG 71 W 36 G 24 RG 15 (W 18) W 40 W 40 W 43 RG 27 (W 20) W 23 RG 31 (W 52) W 23 RG 31 (W 52) W 53 RG 32 (W 49) W 51 RG 38 (W 24) RG 36 (W 25)

- ACIII: Slides, page 2 -

26	W 30	Schematic of time evolution of chlorine chemistry
27	W31	Volume mixing ratios of ClO, HCl and ClONO ₂ : Arctic
28	W32	Stratospheric aerosol layer
29	RG 80	Injection of volcanic ash
30	W35	Calculated increase in UV-B % per decade: MAP
31	W34	UV-B as function of season and latitude
32	W41	Stratospheric Cl and Br: Effect of Copenhagen agreement

Atmospheric Chemistry III : Viewgraphs

1 Chapman chemistry; catalytic cycles (CA2-3) 2 Schematic diagram of catalytic processes in stratosphere (CA2-4) 3 Arosa ozone data 4 Ozone trends as a function of latitude 5 BAS Halley observations to current year (2001) 6A TOMS Maps (Octobers) 1979-1997 Map form minimun of current year (2001) 6B Antarctic ozone minima 1979 – 2001 6C AVI movie compilation for current year plus 7 Antarctic daily ozone minima and ozone hole area 2001 (compared with 1999, 2000) 8 Ozone hole chemistry (Chlorine) 9 Arctic ozone losses, year 2000 10 The importance of bromine 11 Mount Pinatubo 12 Effects of heterogeneous chemistry: relative contributions of cycles 13 Aircraft and ozone Stratospheric ozone: recent observations 14 15 Mechanisms for mid-latitude ozone decline Ozone trends, global: percent per year, 1978-1990 (update to latest) 16 17 Ozone and climate 18 Reduced ozone and UV penetration Factors affecting UV-B at the surface 19 20 Ozone and UV-B: anticorrelation, Antarctic (CA2-2)