General content of this lecture

Heterogeneous processes and air pollution (to include S-chemistry) Note presence of clouds in troposphere

Aerosols and droplets

Sizes, lifetimes^a, sources, effects^b ^asmall coagulate fast; large precipitate fast; thus mid-size have longest lifetime ^bradiation, **chemistry** (cf PSCs of lecture III)

Chemistry on and in aerosols and droplets: types of process

- (i) Condensation of single component ("homogeneous, homomolecular") - eg $H_2O \rightarrow$ droplet;
- (ii) Reaction of gases to form particle ("homogeneous, heteromolecular") - eg $NH_3 + HNO_3 \rightarrow NH_4NO_3$
- (iii) Reactions of gases on existing particle("heterogeneous, heteromolecular");
 eg NH₃ + HNO₃ → NH₄NO₃ on pre-existing particle (? more important for NH₄NO₃ than process (ii))
 eg HNO₄ + NaCl (sea salt) → NaNO₅ + HCl

- eg hydration of anhydrides such as $N_2O_5 \rightarrow HNO_3$
- eg oxidation of SO₂ to SO₄²⁻ (to discuss later)

Process (iii) - condensation of gases on pre-existing particles - is sometimes called *aerosol scavenging*. It affects bulk tropospheric chemistry by providing a sink for nitrogen and hydrogen species, eg, HNO₃, NO₃, N₂O₅, H₂O₂, HO₂ and organic nitrates and peroxides. "Rainout" removes these aerosols.

In process (iv), clouds offer a medium for aqueous-phase reactions, and have large influence on troposphere: Three reasons:

- (a) concentration in solution enhances rates (especially of 2nd order processes);
- (b) activation energies often less in solution than in gas phase; and, a **special** feature,
- (c) high solubility of certain key compounds such as HO_2 and N_2O_5 . Reactions of these species within droplet ensures that dissolution is irreversible and partitioning into aqueous phase is thus strongly favoured despite relatively small fractional volume of H_2O droplets (ca. 10⁻⁶)

Examples of chemistry within droplets (the [..] represent the droplets)

 $[N_2O_5 + H_2O \rightarrow HNO_3 + HNO_3]$ (hydration of acid anhydride) most important. Rate limited by gas-phase diffusion and transfer through interface: reaction *within* the droplet is virtually "instantaneous". **NOTE:** Formation of an acid!

Thus oxidizing capacity of troposphere can be affected by droplet chemistry.

Because HO_2 is highly soluble, and NO is relatively *insoluble*, HO_2 and NO are separated by droplets, and inhibits the reaction

 $HO_2 + NO \rightarrow OH + NO_2$

Remember that this reaction ultimately yields O_3 in the gas phase by NO_2 + hv, so that O_3 production is suppressed.

There are also reactions that destroy O_3 , such as

 $[O_2^{-} + O_3 + H_2O \rightarrow 2O_2 + OH + OH]$

Oxidation of sulphur compounds

Take in two steps: (i) formation of SO_2 and (ii) oxidation of SO_2

Lifetime of SO_2 is a few weeks, and variability by a factor of nearly 2000 suggests largely anthropogenic source. Important component of pollution.

Natural contributions to SO₂ are result of oxidation of H₂S, COS, DMS etc Oxidation pathways discussed

Almost all SO_2 is oxidized to H_2SO_4 in form of aerosol, which is rapidly incorporated into water droplets: the S cycle is closed by wet precipitation of the acid. Homogeneous and heterogeneous oxidation pathways are possible, with the latter probably dominating: enhanced oxidation rates at high relative humidities or when liquid water is present indicate participation of liquid-phase processes.

Gas-phase and H_2O_2 and radical droplet mechanisms

Detail does not concern us - several strange intermediates, mechanisms recently elucidated. Note that heterogeneous steps start with HSO_3^- formation. Broad outline only - steps on handout - note cyclic nature (regeneration of OH in gas phase, SO_3^{-1} in droplets)

Smoke and sulphur pollution: London smog

Existed since at least 12th century \Rightarrow beginning of 14th century – Edward I Law – execution \Rightarrow Victorian 'pea soupers' and Jack the Ripper Bituminous coal: high S and high smoke (tars and hydrocarbons) \rightarrow "London" **smog** Irritant effects of SO₂ Potentiation (factor of 3-4) by soot particles: delivery into respiratory system 1952 smog disaster and legislation Acid precipitation

Natural precipitation is slightly acid (CO₂), but $pH \ge ca.5.6$. Much lower pH have been observed in recent decades. For example, in some parts of Scandinavia, $[H^+]$ concentrations have increased by a factor of 200 in last two decades.

We have already examined two sources of acid: NO_x and $SO_2 \rightarrow HNO_3$ and H_2SO_4 .

Clear evidence that the sources are pollution and not biogenic: fossil fuel combustion.

Meteorological factors may lead to deposition in a small area of pollutants picked up over widespread urbanized or industrial regions: eg Swedish acid rain from Britain. Granite vs. limestone bedrock

Effects of acid deposition: freshwater fish and land vegetation (forest decline)

Photochemical air pollution

Photochemical air pollution (*photochemical smog* or *Los Angeles smog*) is a grotesquely exaggerated form of 'natural' tropospheric chemistry, but concentrations of minor species are greatly elevated in the pollution phenomenon.

Los Angeles — clear and smoggy

What is observed: O_3 , NO_2 , particles, PAN etc

Effects: all toxic and damaging to human health; vegetation; buildings; visibility

Why especially Los Angeles? History - pre motor cars. `Natural' photochemical smog. Smoky mountains. Other cities, including London.

Exhaust gases contain NO and unburnt hydrocarbons

Time evolution of pollutant concentrations: LAX and smog chamber

Problem

Inorganic chemistry CANNOT lead to oxidation of NO to NO_2 . Only possible reaction is $NO + O_3$, yet only source of O_3 is via NO_2 photolysis. **Note** NO and O_3 anticorrelated – result of reaction.

Radical reaction scheme

Critical feature is oxidation of NO to NO_2 by RO_2 and HO_2 as discussed for natural troposphere (cf. Handout for Lect IV, #4.1, 4.2, 4.3, 4.4)

OH +	RCH ₃	\rightarrow RCH ₂	+ H ₂ O
RCH ₂ +	$O_2 \rightarrow$	RCH_2O_2	
RCH_2O_2	+ NO	\rightarrow RCH ₂ O	+ NO ₂
$RCH_2O +$	$O_2 \rightarrow$	RCHO +	HO_2
HO ₂ +	NO	→ OH	+ NO ₂

Initial addition of OH to alkenes yields similar chemistry via an OHRO₂ radical

Aldehydes will produce acyl and peroxyacyl radicals, and hence PAN.

Control strategies and their dangers

'lean burn' (\neg high [NO], lowered [HC]) \neg local improvements (NO + O₃) but downwind increase (NO₂ + hv).

Chamber results illustrate effects of altering [HC] and $[NO_x]$. Reduction of [HC] reduces O_2 in all cases, but reduction of $[NO_x]$ can lead to an *increase* (conditions on RHS of figure typical of urban ambient air)

Catalytic converters (but need for efficiency, otherwise aldehyde production may exacerbate problem).

Atmospheric Chemistry V : Slides

- 1. G 27 LAX street scene clear
- 2. G 28 LAX street scene smoggy
- 3. G 31 Observations LAX
- 4. G 32 Observations smog chamber

- "0". Regions of Earth's atmosphere
- 1. Sizes, lifetimes and effects of atmospheric particles
- 2. Chemistry on and in aerosols and droplets: types of process
- 3. Chemistry on and in aerosols and droplets: processes (iii) and (iv)
- 4. Droplet chemistry
- 5. Sulphur chemistry
- 6. Flow chart showing oxidation steps up to S(IV)
- 7. Concentration—time profiles for smog build-up
- 8. Concentration—time profiles for smog chamber
 - (a) basic outline
 - (b) effect of varying $[NO_x]$ for different [HC]
- 9. Photochemical smog reaction schemes
- 10. Attack of OH on alkenes, and oxidation scheme