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Valence is the theory of the chemical bond

Outline plan

1. The Born-Oppenheimer approximation

2. Bonding in H
+
2

• the LCAO approximation

3. Many electron molecules

• the orbital approximation, its strengths and weaknesses

• binding in H2

• splitting of degenerate configurations

• dissociation of H2

4. Application of the variation principle to find LCAO’s

• the secular equations
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5. Binding of the first row diatomics

• splitting into terms, and

• levels

6. Walsh diagrams

• bond angles in AH2 systems

7. Hückel theory

• use of symmetry

• aromaticity

• bond order, electron densities and organic reactivity

8. Correlation Diagrams

• predicting chemical reactivity

Links with other lecture courses

Quantum Mechanics Statistical Mechanics
Spectroscopy Reaction Rates

Photochemistry (Year 3)



1: The Born-Oppenheimer approximation

General Schrödinger equation for molecules

For a molecular system the Hamiltonian is

Ĥ = T̂e + T̂n + V̂en + V̂nn + V̂ee

T̂ — Kinetic energy terms for the electrons (e) and nuclei (n);

V̂ — Potential energy terms; the various Coulomb interactions between the electrons
and the nuclei.

The Schrödinger equation for a molecule can be written

ĤΨ(r,R) = EΨ(r,R)

where r and R represent collectively the position vectors (with respect to the centre-of-
mass) of the electrons and nuclei, respectively.

This equation is simple to write down, but too complex to solve.

We need to make a sequence of approximations.



The Schrödinger equation for H2

R

r1A

r1B

r2B

r2A

r1

r2

A

B

1

2

CM

+

-

-

+

• Use coordinates expressed in the centre-of-mass (CM) frame
(i.e. factor out kinetic energy of the CM)

• Use atomic units (e = 1, ~ = 1, me = 1)
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The approximation: the electronic problem

Electrons move much faster than nuclei, for the same force. Therefore, they adapt
quickly to changes in nuclear motion.

The Born-Oppenheimer approximation assumes that nuclei are stationary on the timescale
of electron motion.

We can therefore write the total wavefunction in a separable product form

Ψ(r, R) = χn(R)Ψe(r|R) .

χn(R) — wavefunction describing the motion of the nuclei;

Ψe(r|R) — the electronic wavefunction (depends parametrically on the coordinates of
the nuclei).

This separation is known as an adiabatic separation, and leads to adiabatic electronic
states (see below).

Define an electronic Hamiltonian

Ĥe = Ĥ − T̂n ,

which is a Hamiltonian for stationary nuclei.
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Solution of the simplified Schrödinger equation for the electronic motion at fixed R,

ĤeΨe(r|R) = Ee(R)Ψe(r|R)

yields a set of electronic states, with energies Ee(R) that depend on the positions of
the nuclei, R.

This is the equation on which we will focus for most of the remaining lectures.

The electronic states with energies Ee(R) represent
the potential energy functions (curves), V (R), that
nuclei experience at a given separation, R.

Note that Ee(R) ≡ V (R) includes the Coulomb re-
pulsion between the (fixed) nuclei V̂nn.
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The approximation: the nuclear problem

For each electronic state, Ee(R), we can now attempt to solve the Schrödinger equation

for the nuclear motion:

Ĥnχn(R) =
[

T̂n + Ee(R)
]

χn(R) ,

The electronic energies, Ee(R), play the role of the potential energy, V (R), expe-
rienced by the nuclei at a given separation:

=
[

T̂n + V (R)
]

χn(R) = Enχn(R) .

En, are a set of energy levels associated with the vibrational and rotational motion of
the nuclei in a specific electronic state.

Each electronic state is described by a different po-
tential energy curve, with its own set of rotation-
vibration states, obtained from the solution of the
above Schrödinger for the nuclear motion.
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Why is it an approximation?

Write the full Schrödinger equation

ĤΨ(r, R) = EΨ(r, R) where E ≡ En

as

ĤΨ(r, R) = (Ĥe + T̂n)χn(R)Ψe(r|R)

= Ĥeχn(R)Ψe(r|R) + T̂nχn(R)Ψe(r|R)

Term 1 Term 2

Look at Term 1

Ĥeχn(R)Ψe(r|R) = χn(R)ĤeΨe(r|R)

= χn(R)Ee(R)Ψe(r|R) = Ψe(r|R)V (R)χn(R) .

Note that the electronic Hamiltonian does not operate on χn(R).

Look at Term 2

T̂nχn(R)Ψe(r|R) = χn(R)T̂nΨe(r|R) +Ψe(r|R)T̂nχn(R)

This term is more complicated.



Term 2 in more detail - an aside

T̂nχn(R)Ψe(r|R) = χn(R)T̂nΨe(r|R) +Ψe(r|R)T̂nχn(R)

Note: A cross term in the derivatives has been neglected. It turns out not to contribute to the energy of
the system E = 〈Ψ|Ĥ|Ψ〉.

T̂n [χn(R)Ψe(r|R)] ∝ d2 [χnΨe]

dR2

=
d [χnΨ′

e + χ′
nΨe]

dR

= χnΨ
′′
e +2χ′

nΨ
′
e + χ′′

nΨe

When considering the energy of the system the middle term (in green) is zero:

E = 〈Ψ(r, R)|Ĥ|Ψ(r, R)〉 = 〈Ψ(r, R)|Ĥe + T̂n|Ψ(r, R)〉

= + · · ·+ 〈χnΨe|T̂n|χnΨe〉

= + · · ·+ · · ·+2〈χnΨe|χ′
nΨ

′
e〉

However,

d〈Ψe|Ψe〉
dR

=
d1

dR
= 0 = 〈Ψ′

e|Ψe〉+ 〈Ψe|Ψ′
e〉 = 2〈Ψe|Ψ′

e〉

So the term in green goes to zero when considering the energy of the system.



Neglect of χn(R)T̂nΨe(r|R) Term

Neglect of the term in red is the essence of the Born-Oppenheimer approximation. Term
2 then becomes

T̂nχn(R)Ψe(r|R) ≃ Ψe(r|R)T̂nχn(R)

So combining remaining terms in 1 and 2 for the total energy gives

ĤΨ(r, R) = Ψe(r|R)V (R)χn(R) +Ψe(r|R)T̂nχn(R)

= Ψe(r|R)
[
T̂n + V (R)

]
χn(R)

= Eχn(R)Ψe(r|R)

This all works provided χn(R)T̂nΨe(r|R) is a relatively small term.

Neglect of the term χn(R)T̂nΨe(r|R) is reasonable provided Ψe(r|R) is a slowly varying
function of the nuclear positions, R.

Note further that T̂eΨe(r|R) ≈ µ/me T̂nΨe(r|R). Because nuclei are much heavier than
electrons, T̂eΨe(r|R) is usually much greater than T̂nΨe(r|R).



Breakdown of the Born-Oppenheimer approximation.

The Born-Oppenheimer approximation may break down (non-adiabatic behaviour) when

• the nuclear motion is very fast (e.g., close to dissociation), or

• two electronic states have the same energy (e.g., at a curve crossing).

In the region of the crossing, the adiabatic elec-
tronic wavefunctions Ψe(r|R) (represented by the
black lines) change rapidly in character.

R

Li + H

Li + H
+ -

V R( ) ionic

covalent

[See Problem sheet 1, question 5.]





2: Solving the electronic problem

Low lying states of H+
2

R
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Within the Born-Oppenheimer approximation, the Schrödinger equation for the electronic
motion in the H+

2 molecular ion can be written

ĤeΨe(r|R) = Ee(R)Ψe(r|R)

with

Ĥe = T̂e + V̂en + V̂nn

and

V̂en = − 1

rA
− 1

rB

This equation can be solved exactly for H+
2 .

However, we need to develop a treatment suitable for larger systems.



LCAO approximation

A
*

B

*

Suppose that the wavefunction (call it a molecular orbital) can be written as a linear
combination of atomic orbitals (LCAOs) localized on atom A and B:

Ψe = cAφA + cBφB .

In this example take the atomic orbitals φi to be the 1s orbitals on atom i, although other
orbitals could (should) be included in the summation. ci are the weighting coefficients.

For H+
2 , and other homonuclear diatomics, the electron density

ρ(r) = |Ψe|2 = c2Aφ
2
A + c2Bφ

2
B + 2cAcBφAφB

must be equal at all points related by symmetry (⋆). This requires that

c2A = c2B

cA = ±cB = c



Normalization

The wavefunction for the electron in H+
2 must be normalized, i.e.

∫

ρ(r) dr = c2
[∫

φ2
Adr+

∫

φ2
Bdr± 2

∫

φAφBdr

]

= 1 .

However, the 1s atomic orbitals are already normalized individually
∫

φ2
Adr =

∫

φ2
Bdr = 1 ,

such that the normalization constraint can be written

c =

[
1

2 (1± SAB)

]1/2

.

SAB is known as the overlap integral, defined as

SAB =

∫

φAφBdr

A B

The overlap integral is positive.



Wavefunctions

Given the constant, c, the approximate wavefunctions for H+
2 can be written

Ψ+
e =

φA + φB

[2 (1 + SAB)]
1/2

Ψ−
e =

φA − φB

[2 (1− SAB)]
1/2

.

Two molecular wavefunctions are generated from the in-phase and out-of-phase
superposition of the two atomic orbitals.

The electron densities for the two states can be written

ρ±(r) = |Ψ±
e |2 =

φ2
A + φ2

B ± 2φAφB

2 (1± SAB)

(φ2
A + φ2

B)

2
— the sum of atomic electron densities.

φAφB — large where the orbitals overlap.

A B

|Y |
+ 2

A B

|Y |
- 2

In Ψ+
e the electron density is focussed between the nuclei (and reduced elsewhere by

(1+ SAB)).

In Ψ−
e the electron density is reduced between the nuclei (and increased elsewhere by

(1− SAB)).



Orbital energies

The molecular orbital energies can be obtained by evaluating the expression

〈E±
e 〉 ≡ E±

e (R) = 〈Ψ±
e |Ĥe|Ψ±

e 〉 .

Substituting for the wavefunctions yields

E±
e (R) =

HAA ±HAB ±HBA +HBB

2(1± SAB)
,

where we have defined the integrals

Hij =

∫

φiĤφj dr .

Because φA and φB are identical 1s orbitals,

HAA = HBB and HAB = HBA .

Therefore, the energy reduces to

E±
e (R) =

HAA ±HAB

(1± SAB)
.
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Let’s look at the integrals more closely:

HAA =

∫

φA

[
Ĥe

]
φAdr Coulomb integral

=

∫

φA

[

T̂e −
1

rA

]

φAdr ǫ1s 1s orbital energy of H atom A

+

∫

φA

[

− 1

rB

]

φAdr J(R) attraction of 1s electron density on A
to the B nucleus

+

∫

φA

[
1

R

]

φAdr
1

R
Coulomb repulsion between nuclei

A B
J R( )

Note that J(R) is negative.

So

HAA = HBB = ǫ1s +
1

R
+ J(R)

HAA can be thought of as the energy of the electron localized on A in the presence of B.
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Similarly

HAB =

∫

φA

[
Ĥe

]
φBdr Resonance integral

=

∫

φA

[

T̂e −
1

rB

]

φBdr ǫ1sSAB

+

∫

φA

[

− 1

rA

]

φBdr K(R) attraction of overlap density to nucleus
A

+

∫

φA

[
1

R

]

φBdr
1

R
SAB

A B
K R( )

K(R) is also negative.

So

HAB = HBA = SAB

(

ǫ1s +
1

R

)

+K(R)

There is no classical equivalent to K(R).
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Adding up the terms yields

E±
e (R) = ǫ1s +

1

R
+

J ±K

1± SAB

.

The integrals are performed explicitly in Green QM2

SAB(R) = e−R

(

1+ R+
R2

3

)

J(R) = −
[
1

R
− e−2R

(

1+
1

R

)]

K(R) = −e−R (1 + R)

In terms of bonding K(R) must dominate.
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Contributions to bonding ...

E±
e (R) = ǫ1s +

1

R
+

J ±K

1± SAB

.

In terms of bonding K(R) must dominate.

nuclear repulsion

electronic binding energy

total
electronic
energy

R

Y
+

nuclear repulsion

electronic binding energy

total
electronic
energy R

Y
-

The 1 ± SAB term in E±
e ensures that antibonding orbitals are more antibonding

than bonding orbitals are bonding.



How bad is the LCAO approximation?

Compare with the exact solution (within the Born-Oppenheimer approximation) for H+
2 .

∼8% error in Re

∼46% error in De (for the ground electronic state)

H2

+

X( )
2 +
Sg

A( )
2 +
Su

H(1s) + H
+

R

V R( )

exact
LCAO

Provides a qualitative guide to the nature of the binding and order of the electronic
states.

Improve by increasing the number of basis functions in Ψe, e.g., write

Ψe = c1φ1sA + c2φ1sB + c3φ2sA + c4φ2sB + c5φ2pzA
+ · · ·

Optimize the coefficients, ci, using the variation principle to minimize the energy. This
would give the exact result in the limit of an infinite (or complete) basis set of orbitals.

In addition, one can also improve the basis functions themselves,

φ1s = e−ξ r .

Again, ξ can be optimized to minimize the energy.



3: Many electrons

Orbital symmetries

Atomic orbitals are labelled according to the principal quantum number, n, and the orbital
angular momentum quantum number, l.

Electrons in a diatomic molecule experience a cylindrically symmetric electric field.

This leads to a Stark splitting of the atomic l states into components with ml = 0 and
ml = ±1, etc., where ml is the component of l along the symmetry axis of the field (the
bond axis).

l =2 m
l

-2
+2

-1
+1

0
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The symmetries of the orbitals in diatomic molecules are labelled by the magnitude of
the component of the angular momentum along the internuclear axis, λ~.

Looking down the symmetry axis

+

-

+ -

+-

|λ| = 0 (σ) |λ| = 1 (π) |λ| = 2 (δ)

(cf. particle on a ring - see Problem sheet 2, question 3)
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For H+
2

Ψ+
e is the 1σg orbital

+ sg

Ψ−
e is the 1σu orbital + - su

The ‘1’ indicates that Ψ+
e is the lowest orbital of that symmetry.

The g and u symmetry labels refer to the inversion symmetry, Î, with respect to the
molecular frame

ÎΨe(x, y, z) = ±Ψe(−x,−y,−z)

+

-

+

-
pu

+

-+

-
pg



The orbital approximation

Treat many electron molecules in same way as many electron atoms.

Define a molecular orbital (MO) as a one-electron wavefunction in a molecule.
In some cases these MO’s may be constructed from eigenfunctions of some effective
one-electron Hamiltonian.

Write the total wavefunction in the many electron case as a product of one electron MOs

Ψtot(r1, r2, · · · rN) = (φa(r1)φb(r2) · · ·φn(rN))space
× [Φ(1)Φ(2) · · ·Φ(N)]spin .

Here, the φi are the molecular orbitals (e.g., the 1σg orbital of H+
2 just discussed).

The total wavefunction is associated with a particular electron configuration.

Ψtot is a product of a spatial wavefunction (which describes where the electrons are) and

a spin part (which tells us whether the spin of each electron is ‘up’ or ‘down’).



Pauli exclusion principle

The total wavefunction must be constructed so that it satisfies the Pauli exclusion
principle.

It must be antisymmetric with respect to exchange of any two identical electrons.

For example, the ground state of the H2 molecule has an electron configuration 1σ2
g.

The Pauli principle can only be satisfied if the electron spins are paired. The total
wavefunction can be written, approximately

Ψtot(r1, r2) = (φ1σg
(r1)φ1σg

(r2))×
1√
2
[α(1)β(2)− α(2)β(1)] .

In this case the spatial wavefunction is symmetric, and the spin function is antisymmetric:

Ψtot(r2, r1) = (φ1σg
(r2)φ1σg

(r1))×
1√
2
[α(2)β(1)− α(1)β(2)]

= Ψspace ×−Φspin

= −Ψtot(r1, r2)

In general, a total (anti-symmetrized) wavefunction satisfying the Pauli Principle can be
constructed using a Slater determinant (see Atkins MQM), which generates an antisym-
metric sum of product terms in Ψtot, rather than a single product.



Labelling of molecular states

Recall that molecular orbitals are labelled according to |λ|.

In the many electron case, different electronic states are generated according to how the
electrons fill up the available orbitals.

Molecular states are labelled with a term symbol:

2S+1|Λ| .

|Λ| is the magnitude of the component of the total electronic orbital angular momentum
along the internuclear axis.

The total component of the orbital angular momentum is obtained from the sum

Λ = λ1 + λ2 + λ3 + · · ·
S is the total spin angular momentum quantum number, obtained from the vector sum

S = s1 + s2 + s3 + · · ·
Note that the spin angular momentum is not coupled to the internuclear axis (i.e. is not
affected so strongly by the electric field gradient) in the molecule.



Predictions of the orbital approximation

Ground electronic states

Molecule Confign Term No. of Re/Å De/kJmol−1

Symbol bonding e’s

H+
2 (1σg)1 2Σ+

g 1 1.06 256

H2 (1σg)2 1Σ+
g 2 0.74 432

He+2 (1σg)2(1σu)1 2Σ+
u 1 1.08 300

He2 (1σg)2(1σu)2 1Σ+
g 0 see below

MO picture provides qualitative rationale for experimental observations.

Note: The electronic states are also labelled according to their inversion symmetry (i.e. g/u), and their
symmetry (+/−) with respect to reflection in the molecular plane see Problem sheet 2, question 3).

σ orbitals, and therefore the states they lead to when occupied, are symmetric with respect to this
operation.

Doubly occupied orbitals are also totally symmetric (i.e. (g × g) = g, (u × u) = g, (+ × +) = +, and

(−×−) = +).



Nature of the orbital approximation

Does the orbital approximation for Ψtot satisfy the Schrödinger equation?

Look at H2 ground state again

ĤΨtot =

(

ĥ1 + ĥ2 +
1

r12

)

ΨspaceΦspin .

ĥi is the Hamiltonian for electron i in H+
2 , and 1/r12 is the electron-electron Coulomb

repulsion.

The Hamiltonian does not operate directly on the spin function, so we can write

ĤΨspace =

(

ĥ1 + ĥ2 +
1

r12

)

φ1σg
(r1)φ1σg

(r2) .

This yields

ĤΨspace = (ǫ1σg
+ ǫ1σg)Ψspace +

1

r12
Ψspace .

The last term is not a constant ×Ψspace.
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To allow for this electron-electron repulsion term Ψspace must depend on r12, the electron-
electron separation.

The electron positions described by Ψspace must be correlated - the orbital ap-
proximation does not allow for this electron correlation.

+ -- +

Note: Some improvements can be made by optimizing the orbitals so as to minimize the
average inter-electron repulsion using the variation principle.

This leads to the self-consistent field or Hartree-Fock orbitals (see below).

However, these procedures do not eliminate problems associated with the neglect of
electron correlation.



Consequences of the orbital approximation

A. Dispersion forces

He2 is predicted to be unbound because anti-bonding orbitals are more antibonding than
bonding orbitals are bonding.

He2

He(1s)

sg

su

He(1s)

In reality the electron positions are correlated, leading to the van der Waals (dispersion)
interaction, V (R) ∝ 1/r6.

Leads to a binding energy of ǫ/kB ∼ 11K.

Within the orbital approximation, for example the ground state of H2 is represented

P (r1, r2) = |Ψe|2 = P1σg
(r1)P1σg

(r2)

i.e. a product of probabilities. The electron positions are intrinsically independent.



B. Dissociation

Examine the large R behaviour of the electron density in the molecular orbital wavefunc-
tion for H2

|φ1σg
(r1)φ1σg

(r2)|2
R→∞
=

|1sA(r1)|2|1sB(r2)|2

+ |1sB(r1)|2|1sA(r2)|2

+ |1sA(r1)|2|1sA(r2)|2

+ |1sB(r1)|2|1sB(r2)|2

(note that the cross terms vanish as R → ∞)

i.e. dissociation products are H + H + H+ + H−, and the estimate of the dissociation
energy is very poor.



Valence bond description

An alternative is to write a valence bond wavefunctions for the ground electronic state
of H2

ΨVB(r1, r2) = N [1sA(r1)1sB(r2) + 1sA(r2)1sB(r1)]

This is not an orbital approximation.

This completely removes the ionic terms in the wavefunction, leading to a more accurate
description at the dissociation limit.

However, the description of the molecule is poor for the same reason: the valence bond
wavefunction is over-correlated.
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A better approach is to mix the MO and VB wavefunctions

Ψe = N(λ) [ΨMO + λΨVB] ,

where λ is optimized, using the variation principle, at each value of R.

H2

X( )
1 +
Sg H(1s) + H(1s)

R

V R( )

exact
LCAO

VB

CI/MO+VB

In this way the optimum mix of covalent and ionic character can be obtained at each R.



Configuration interaction

The same wavefunction is obtained using the MO wavefunction with configuration in-

teraction.

The configurations (1σg)2 and (1σu)2 both lead to electronic states of 1Σ+
g symmetry.

Ψ1 = φ1σg
(r1)φ1σg

(r2)

Ψ2 = φ1σu
(r1)φ1σu

(r2)

Both of these electronic states correlate to the same H + H + H+ + H− products.
H2

X( )
1 +
Sg

H(1s) + H(1s)

R

V R( )

LCAO

CI

H +   H
- +

1 +
Sg

Y
1

Y
2

Y
+

Y
-

Better trial wavefunctions for these two 1Σ+
g states are obtained by mixing the two

configurations

Ψ± = Ψ1 ± λ′Ψ2 .

The optimized ground state wavefunction is the same as that obtained using the mixed
valence bond/MO wavefunction. More details can be found in Green QM2.



C. Configurations and terms

The orbital approximation predicts that all terms arising from a given configuration will
be degenerate.

In reality, they can be split into different terms.

The energy of a configuration is not obtained simply as the sum of the occupied
orbital energies!

Consider a (π)2 configuration (see later for more discussion of B2 and O2). The π orbitals
are two-fold degenerate, corresponding to an electron rotating about the bond axis in
opposite directions, leading to ml = ±1.

l=+1 l=-1

1
D

l=+1 l=-1

1
S

l=+1 l=-1

3
S

In reality, the above arrangements of the two electrons have different energies, because
of differences in the inter-electron repulsion.





4: Applications of the variation principle

Secular equations

Provides a general route to approximate molecular wavefunctions and orbital energies.

Let Ψ be some trial (approximate) wavefunction. Then, according to the variation
principle

〈E〉 ≡ E =
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉 ≥ E0 ,

where E0 is the true ground state.

Apply this to LCAO molecular orbitals

Ψ = N

m∑

n=1

cnφn ,

where N is a normalization constant, and cn is the (real) coefficient for the nth basis
function, φn.

Assume also that the basis functions, φn, are normalized.

For example, for the first row diatomics the φn might be the basis set comprised of the
1s, 2s, 2px, etc. orbitals on each atom.
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Introduce simplifying notation

〈Ψ|Ψ〉 =
∫
(
∑

n

cnφn

)(
∑

m

cmφm

)

dτ =
∑

n,m

cncmSnm ,

where the overlap integral is defined

Snm =

∫

φnφmdτ .

Note that Snm = Smn.

The numerator can be written

〈Ψ|Ĥ|Ψ〉 =
∫
(
∑

n

cnφn

)

Ĥ

(
∑

m

cmφm

)

dτ =
∑

n,m

cncmHnm ,

where the matrix elements are defined

Hnm =

∫

φnĤφmdτ .

The Hermitian properties of Ĥ ensure that Hnm = Hmn.



Cont.

To find the best estimate of E0, minimize E with respect to the coefficients, ck.

∂E

∂ck
=

1

〈Ψ|Ψ〉
∂〈Ψ|Ĥ|Ψ〉

∂ck
− 〈Ψ|Ĥ|Ψ〉

〈Ψ|Ψ〉2
∂〈Ψ|Ψ〉

∂ck
= 0

or
∂〈Ψ|Ĥ|Ψ〉

∂ck
− 〈Ψ|Ĥ|Ψ〉

〈Ψ|Ψ〉
∂〈Ψ|Ψ〉

∂ck
= 0 .

The partial derivatives can be written explicitly

∂〈Ψ|Ĥ|Ψ〉
∂ck

= 2
∑

m

cmHkm

and

∂〈Ψ|Ψ〉
∂ck

= 2
∑

m

cmSkm ,

where the factor of 2 arises from the double summations in 〈Ψ|Ψ〉 and 〈Ψ|Ĥ|Ψ〉.



Cont.

Therefore

∑

m

(Hkm − ESkm) cm = 0 for all k = 1 → m.

In matrix notation this can be written

(H− ES) c = 0 ,

which are known as the secular equations. The non-trivial solutions are given by

det |H− ES| = 0 .

Solution yields a polynomial with m roots, or eigenvalues, i.e. m MO energies, E, the
lowest of which is the best estimate of the ground state energy.

Once the eigenvalues, E, are known, the coefficients, cm, can be calculated by back-
substitution into the secular equations. For the lowest root, one obtains the best estimate
of Ψ0.



Illustration for two orbitals

Consider a heteronuclear diatomic molecule, e.g., a simple model of the HOMO of LiH

Ψ ≈ c1φLi + c2φH ,

where φLi could be the 2s orbital on Li, and φH could be the 1s orbital on the H atom.

The secular equation reduces to





H11 − E H12 − ES12

H21 − ES21 H22 − E









c1

c2



 =





0

0





H11 = αA and H22 = αB are approximately the energies of the 2s orbital on Li (−5 eV
∼= −I.P. of Li) and the 1s orbital on H (−13 eV ∼= −I.P. of H).

H12 = H21 = β ∼ −2 eV at Re, known as the resonance integral, is the energy associated
with the overlap density.

S12 = S21 = S ∼ 0.4 at Re. Note that S11 = S22 = 1



Solving to get the energy levels.

Multiplying out the secular determinant gives

(αA − E)(αB − E)− (β − ES)2 = 0 ,

the solution of which is

E =
αA + αB − 2βS ±

√

(αA + αB − 2βS)2 − 4(1− S2)(αAαB − β2)

2(1− S2)
(1)

To progress further, either

1. Stick the numbers into a computer

2. Set S = 0 (provides a useful guide to the general behaviour — see below)

3. Set αA = αB = α and check that we get the homonuclear H+
2 case.



Check for the H+
2 case...

E± =
α± β

1± S
.

This equation agrees with that for H+
2 , when explicit results for α (= HAA) and β (= HAB)

are substituted.

.... and solving to get the wavefunctions.

To get the orbitals substitute back into the secular equations. For example, for the
ground state (Ψ+)

(

α− α+ β

1+ S

)

cA +

(

β − (α+ β)S

1+ S

)

cB = 0 ,

∴ cA = cB .

Normalization, as before (see p11), leads to

cA = cB =
1

[2(1 + S)]
1/2

,

as produced before using symmetry arguments. The same procedure can be used for the
other root (i.e. Ψ−).



The two orbital case without overlap

Using equation 1, setting S = 0

E =
1

2

(

αA + αB ±
√

(αA + αB)
2 − 4(αAαB − β2)

)

.

When αA = αB = α

E± = α± β

E-=a-b

E+=a+b

a

When αA 6= αB

E± =
αA + αB

2
± αA − αB

2

(

1+
4β2

(αA − αB)2

)1/2

If |αA − αB| = 2|β|

E-

E+

aB

aAb(2 -1)
1/2

b(2 -1)
1/2

(a +b)B



Energies

For small β/|αA − αB| the energies E± can be approximated

E± =







αA + β2

αA−αB
+ · · ·

αB − β2

αA−αB
+ · · ·

Plot the MO energies versus (αA − αB) at fixed β.

a -aA B

E/b

extent of
stabilization
of lower
orbital

E+

E-

b=0

This reveals that atomic orbitals of very different energies do not mix.



Wavefunctions

For αA ≤ αB (so that orbital of A is lower than that of B), with

Ψ+ = c+AφA + c+BφB

and

Ψ− = c−AφA + c−BφB ,

then

c+A
c+B

=

√

∆2 +4β2 +∆

2β
with ∆ = αA − αB .

For LiH ∆/β ∼ 4.

(a -a bA B)/0

1

-1

2

3

321

c /cA B

- -

c /cA B

+ +



5: Bonding in diatomic molecules

General observations

• Orbitals of different symmetry do not mix

since

Hij =

∫

φiĤφjdτ = β = 0

Sij =

∫

φiφjdτ = 0

• Orbitals of very different energies do not mix

since then ∆/β is large (see above).

• The non-crossing rule.

The energies of two states of the same symmetry can never be equal (since β 6= 0 -
see later).



First row homonuclear diatomics

Expect the MO’s to be made up of combinations of 1s, 2s, 2px, 2py, 2pz.... atomic
orbitals (with z lying along the bond).

However,

Rule 1:

Two atomic orbitals will only both make a large contribution to an MO if their atomic

energies are similar.

Ignore mixing of 1s with 2s and 2p,

and mixing of 2s with 2pz (depending on the 2s-2p atomic separation, see below),

Rule 2:

Orbitals on different atoms with zero overlap do not contribute to the same MO.

+

-
+

Hence, ignore mixing of 2sA, 2pz,A with 2px,B and 2py,B.



Leads to the following orbitals:

3σu = 2pz,A +2pz,B

1πy,g = 2py,A − 2py,B

1πx,g = 2px,A − 2px,B

1πy,u = 2py,A +2py,B

1πx,u = 2px,A +2px,B

3σg = 2pz,A − 2pz,B

2σu = 2sA − 2sB

2σg = 2sA +2sB

1s overlap is negligible at the optimum bond length for overlap of 2s and 2p.

Expect overlap of 2s and 2pz orbitals to decrease less rapidly with R than for the 2px,y
orbitals.



MO diagram for O2 and upwards

If 2s and 2pz energy separation is large (i.e. E2p − E2s ≫ bonding interaction) - limit of
large penetration - obtain following MO diagram.

2p

2s

2p

2s

1s 1s

1sg

1su

2sg

2su

3sg

1pu

1pg

3su



Mixing or hybridization of MOs

Mixing of 2σg and 3σg, such that

2sg

3sg

2 +s lg 3sg

2 -s lg 3sg

Acquires bonding
character.

2 stabilized.sg

Acquires non-bonding
character.

3 destabilized.sg

Ψ−
g = 2σg − λ3σg develops bonding character

Ψ+
g = 3σg + λ2σg develops non-bonding character

and

Ψ−
u = 2σu − λ3σu develops non-bonding character

Ψ+
u = 3σu + λ2σu develops anti-bonding character



Light atom picture

If 2s and 2pz energy separation is small (i.e. E2p − E2s ∼ bonding interaction) - limit of
small penetration - this interaction leads to the ‘light atom’ MO picture:

2p

2s

2p

2s

1s 1s

1su

2sg

2su

3sg

1pg

1pu

1sg

3su

An alternative, but equivalent description is to mix, or hybridize, the atomic orbitals
before forming bond.



Properties of homonuclear diatomics

Electron Excess Number Bond Dissn Term
config. bonding unpaired length/ energy/ Symbol

e’s e’s Å kJmol−1

Li2 (2σg)2 2 0 2.67 107 1Σ+
g

Be2 (2σg)2(2σu)2 0 0 2.45 9 1Σ+
g

B2 [Be](1πu)2 2 2 1.59 291 3Σ−
g

C2 [Be](1πu)4 4 0 1.24 590 1Σ+
g

N+
2 [C](3σg)1 5 1 1.12 841 2Σ+

g

N2 [C](3σg)2 6 0 1.09 942 1Σ+
g

O+
2 [N](1πg)1 5 1 1.12 644 2Πg

O2 [N](1πg)2 4 2 1.21 494 3Σ−
g

F2 [N](1πg)4 2 0 1.44 154 1Σ+
g

Bonding determined by mix of occupied orbitals.

Note: [Be], etc. stands for the ground state electronic configuration of Be2, etc..

See Problem sheet 2.



Splitting into terms - revisited

r/pm ωe/cm−1 De/eV E⋆/eV I/eV

N2 110 2359 9.76 6.22 15.58

N+
2 112 2207 8.71 1.14

NO 115 1904 6.50 0.015 9.26
NO+ 106 2376 10.84 6.47

O2 121 1580 5.12 0.98 12.07

O+
2 112 1905 6.66 0.024

[ ωe is the harmonic vibrational wavenumber, De the bond dissociation energy, E⋆ the
energy of the first excited electronic state, and I is the first ionization energy. ]

Problem Sheet 2, Question 1



Splitting into terms - revisited

Oxygen

The ground electronic configuration of O2 is

[Be](3σg)2(1πu)4(1πg)2 .

It is split in energy into three electronic states due to the effects of inter-electron repul-
sion.

The states arising from the (πg)2 configuration can be worked out as follows:

S = s1 + s2, s1 + s2 − 1, · · · |s1 − s2| = 0 or 1

l = +1l = -1

|Λ| = |λ1 + λ2|, |λ1 − λ2| = 0 (Σ) or 2 (∆)

In principle there will be singlet and triplet Σ and ∆ states, but not all of these satisfy
the Pauli exclusion principle.



Look at wavefunctions in more detail.

For the ∆ state the electrons orbit about the bond in the same direction

Ψ∆ = π+1(1)π+1(2)Ψspin

or

Ψ∆ = π−1(1)π−1(2)Ψspin .

Exchange of the labels for electrons (1) and (2) tells us that the spatial part of the above
wavefunctions are symmetric with respect to exchange of the electrons.

To satisfy the Pauli exclusion principle, the spin functions must be anti-symmetric:

Ψspin =
1√
2
[α(1)β(2)− β(1)α(2)]

The only possibility is that the ∆ state is a singlet state.



In the case of Σ, both singlet and triplet states are allowed

Ψ3Σ =
1√
2
[π+1(1)π−1(2)− π−1(1)π+1(2)]







α(1)α(2)
1√
2
[α(1)β(2)+β(1)α(2)]

β(1)β(2)

Ψ1Σ =
1√
2
[π+1(1)π−1(2) + π−1(1)π+1(2)]

{
1√
2
[α(1)β(2)−β(1)α(2)]

}

The full term symbols are 3Σ−
g ,

1∆g, and 1Σ+
g .

Symmetry (direct product) tables can also be used to work most of this out

π × π = Σ+ + [Σ−] +∆

The square brackets indicate that the spatial wavefunction for the Σ− state is antisym-

metric with respect to electron exchange.

The +/− reflection symmetry label is determined using the procedures illustrated
in problem sheet 2, question 3.



Energy ordering of the states

The relative energies of the states can be worked out by applying Hund’s rules, although
the latter were really devised for atoms.

The triplet state is lowest because of the formation of a Fermi hole in the triplet state.
Notice that the spatial part of the wavefunction is zero when the coordinates of the two
unpaired electrons are the same,

Ψ3Σspace =
1√
2
[π+1(1)π−1(2)− π−1(1)π+1(2)] .

This spatial wavefunction therefore gives rise to reduced repulsion between the unpaired
electrons. This effect is known as spin-correlation.

The 1∆ state lies lower than 1Σ because the electrons are able to avoid one another
more in a state of high |Λ|.

O2

X( )
3 -
Sg

O( P) + O( P)
3 3

R

V R( )

1
Dg

1 +
Sg



Splitting into terms - continued

The low lying electronic states of C2

Term Energy/ Vibrational Bondlength/
symbol cm−1 frequency/cm−1 Å

1Σ+
g 0 1856 1.242

3Πu 610 1641 1.311
1Πu 8392 1608 1.318
1Σ+

u 43240 1830 1.238

Problem Sheet 2, Question 2



Splitting into terms - continued

Low lying states of C2

3sg

1pg

1pu

3su

2su

1 +
Sg

3
Pu

1
Pu

1 +
Su<< < <

Things to note:

• The 3Πu and 1Πu states have similar properties (same electron configuration);

• The energy separation between the 3Πu and 1Πu states reflect the spin correlation energy (Fermi hole
and Fermi heap);

• The 1Σ+
u state lies very high in energy;

• The ground 1Σ+
g and excited 1Σ+

u states have similar properties (suggesting that the σg orbitals are
largely non-bonding in character);

• The ground 1Σ+
g and excited 3Πu states are very close in energy (due to the small gap between the

1πu and 3σg and the reduced electron repulsion in the triplet state).



Splitting into terms - continued

NO and O+
2

The ground state electronic configuration of NO (and O+
2 ) is (nb., for NO drop the g/u

labels)

[Be] (3σg)2(1πu)4(1πg)1 ,

leading to a 2Π term (i.e. S = 1/2, |Λ| = 1).

This state is split into two levels by the spin-orbit interaction:

The coupling arises from the coupling between intrinsic magnetic moment of the electron
and that generated by the orbital motion of the electron.

Label states according to the full term symbol:
2S+1|Λ||Ω| ,

where

Ω = Λ+Σ .

Ω is the component of the total electronic angular momentum along the inter-
nuclear axis. Each spin-orbit state is therefore two-fold degenerate.

For NO we have 2Π3/2 or 2Π1/2 spin-orbit states. The |Ω| = 1/2 state is the lowest in
energy because the molecular orbital is less than half full (Hund’s 3rd rule).





6: The shapes of polyatomic molecules

Symmetry adapted linear combinations (SALCs)

AH2 at linearity.

H—A—H

For 1st row element A, the valence MO’s will involve 2sA, 2px,A, 2py,A 2pzA and two 1s
orbitals on the H atoms.

Only orbitals of the same symmetry mix. In D∞h it’s easy to write down the symmetry
of the 2s and 2p orbitals of A (see below).

1s orbitals of H have no symmetry in the D∞h point group.

Take linear combination of H 1s functions to ‘symmetrize’ the H atom 1s basis functions:

φ(σg) = 1s1 +1s2

φ(σu) = 1s1 − 1s2

See butadiene example later.



MO diagram for AH2 molecules

At linearity (D∞h) the atomic orbitals have the symmetries

2sA σg

2px,A,2py,A πu

2pzA σu

(1s1 − 1s2) σu

(1s1 +1s2) σg

Expect:

1 1s +/- s1 2

2pA

2sA

2sg

3sg

1pu

1su

2su



Walsh diagram for AH2 molecules

What happens to the MO diagram on bending?

Symmetry is lowered from D∞h to C2v.

H H

O

z

x

Descent in symmetry tables can be used to work out how the orbital symmetries in C2v.

2sg

3sg

1pu

1su

2su

2a1

3a1

1b1

1b2

2b1

4a1

180
o

90
o

Bond angle, q

2a1 Stabilized because of weak bonding H—H interaction, and mixing with 2pz.

1b1 Destabilized because of reduction in overlap, and antibonding H—H interaction.

3a1(pz) Strongly stabilized by mixing with 4a1 (3σg) - mixing strong because close in energy.

1b2(py) Remains non-bonding



Predicted bond angles for AH2 molecules

Molecule Config. θ

BeH2 (2a1)2(1b1)2 180◦

BH2 (2a1)2(1b1)2(3a1)1 131◦

CH2 (2a1)2(1b1)2(3a1)1(1b2)1 136◦ Triplet

NH2 (2a1)2(1b1)2(3a1)2(1b2)1 103◦

H2O (2a1)2(1b1)2(3a1)2(1b2)2 105◦

See Photochemistry lecture course next year for applications to excited electronic states
of AH2 molecules.



7: Hückel theory for polyatomic molecules

Introduction

Approximate treatment of π electron systems in organic molecules:1 2

3 4

5 6
Approximations

1. π and σ frameworks completely separated

2. Trial wavefunctions can be used of the form: Ψ =
∑

i

cip
π
i

3. Hii = 〈pi|Ĥ|pi〉 = α same for all atoms

4. Hij = 〈pi|Ĥ|pj〉 = β i bonded to j

= 0 otherwise .

Note that β is negative.

5. Sij = 〈pi|pj〉 = δij ,

where δij = 1 when i = j and δij = 0 when i 6= j.



Ethene

Optimize orbital coefficients as before using the variation principle.

Know already that this leads to secular equations
(

α− E β
β α− E

)(

c1
c2

)

= 0 .

So the energies are the solutions of the secular determinant
∣
∣
∣
∣

α− E β
β α− E

∣
∣
∣
∣
= 0

E-=a-b

E+=a+b

a

Wavefunctions obtained by substituting the energies E± back into secular equation:

Ψ± =
1√
2
(p1 ± p2)

Thus, with respect to two non-bonded pπ electrons, ethene has a π stabilization
energy of 2β (i.e., β for each electron).

See Sheet 2, question 1 for a problem involving the allyl radical.



Butadiene

There is nothing in Hückel theory that distinguishes cis− from trans−, or indeed
linear, butadiene.

1 2

3 4

As before, the trial wavefunction,

Ψ = c1p1 + c2p2 + c3p3 + c4p4 ,

is optimized using the variation principle. The secular equation can be written down
directly






α− E β 0 0
β α− E β 0
0 β α− E β
0 0 β α− E











c1
c2
c3
c4




 = 0 .

Multiplying out this leads to a quartic equation. Although this can be solved, here we
will use of symmetry to simplify the algebra.



cont.

Butadiene has a two-fold symmetry axis. Form symmetry adapted linear combinations
(SALCs) of atomic orbitals

χ1 =
1√
2
(p1 + p4) χ2 =

1√
2
(p2 + p3)

χ3 =
1√
2
(p2 − p3) χ4 =

1√
2
(p1 − p4)

χ1 and χ2 are symmetric (A), and χ3 and χ4 are antisymmetric (B) with respect to the
C2 operation.

Let

Ψ = c1χ1 + c2χ2 + c3χ3 + c4χ4

Hij and Sij vanish if i and j are of different symmetry:






α− E β 0 0
β α+ β − E 0 0
0 0 α− β − E β
0 0 β α− E











c1
c2
c3
c4




 = 0 .

Matrix becomes block diagonal.



cont.

Look at some of the matrix elements

H11 = 〈χ1|Ĥ|χ1〉 = 〈 1√
2
(p1 + p4) | Ĥ | 1√

2
(p1 + p4)〉

=
1

2

{

〈p1|Ĥ|p1〉
︸ ︷︷ ︸

α

+ 〈p4|Ĥ|p4〉
︸ ︷︷ ︸

α

+ 〈p1|Ĥ|p4〉
︸ ︷︷ ︸

0

+ 〈p4|Ĥ|p1〉
︸ ︷︷ ︸

0

}

= α

H14 = 〈χ1|Ĥ|χ4〉 = 〈 1√
2
(p1 + p4) | Ĥ | 1√

2
(p1 − p4)〉

=
1

2

{

〈p1|Ĥ|p1〉
︸ ︷︷ ︸

α

−〈p4|Ĥ|p4〉
︸ ︷︷ ︸

α

−〈p1|Ĥ|p4〉
︸ ︷︷ ︸

0

+ 〈p4|Ĥ|p1〉
︸ ︷︷ ︸

0

}

= 0

H33 = 〈χ3|Ĥ|χ3〉 = 〈 1√
2
(p2 − p3) | Ĥ | 1√

2
(p2 − p3)〉

=
1

2

{

〈p2|Ĥ|p2〉
︸ ︷︷ ︸

α

+ 〈p3|Ĥ|p3〉
︸ ︷︷ ︸

α

−〈p2|Ĥ|p3〉
︸ ︷︷ ︸

β

−〈p3|Ĥ|p2〉
︸ ︷︷ ︸

β

}

= α− β

Note that, as before, the overlap integrals in the SALC basis are

Sij = δij



cont.

Now solve the upper 2× 2 determinant.

(α− E)(α+ β − E)− β2 = 0

E± = α+
1±

√
5

2
β

E1 = α+1.62β E3 = α− 0.62β

To get molecular orbital corresponding to E1 substitute E1 into secular equations

−1.62βc1 + βc2 = 0

c1 =
c2

1.62



cont.

But wavefunction needs to be normalized

Ψ1 = N
[

1√
2
(p1 + p4) + 1.62 1√

2
(p2 + p3)

]

〈Ψ1|Ψ1〉 = N2

[
1

2
+

1

2
+

1.622

2
+

1.622

2

]

= 1

So

Ψ1 = 0.37p1 + 0.60p2 + 0.60p3 + 0.37p4

Similarly, find MO Ψ3 associated with energy level E3

Ψ3 = 0.60p1 − 0.37p2 − 0.37p3 + 0.60p4



cont.

From the lower 2× 2 determinant one obtains

E2 = α+0.62β E4 = α− 1.62β

with the normalized wavefunctions

Ψ2 = 0.60p1 + 0.37p2 − 0.37p3 − 0.60p4

and

Ψ4 = 0.37p1 − 0.60p2 + 0.60p3 − 0.37p4

a

E1

E2

E3

E4

Y1

Y2

Y3

Y4



Charge density on atoms

Once the wavefunctions of the MOs are known the charge densities on each atom, qi,
can be obtained from

qi =
∑

k

nk (c
k
i )

2 ,

where the sum over k is over all occupied molecular orbitals, and nk is the occupation
number of MO k (either 0, 1 or 2 for non-degenerate orbitals).

(cki )
2 is the square of the coefficient in the kth orbital on the ith atom.

For butadiene, this reads (for atoms 1 and 2)

q1 = 0.372 × 2 + 0.602 × 2 = 1

q2 = 0.602 × 2 + 0.372 × 2 = 1

and similarly for atoms 3 and 4.

That the charge densities on all the atoms are equal is a general property of the ground
states of alternant hydrocarbons.

These also have a pairing of the MO energies E = α± xβ.

See MKT for more details.



Resonance stabilization energy

In Hückel theory the resonance stabilization energy provides an indication of the increased
molecular stability that arises from π bonding.

For the ground electronic state of butadiene the total electronic energy is

Etot = 2(α+ 1.62β) + 2(α+ 0.62β) = 4α+ 4.48β

Thus the resonance stabilization energy is

∆E = Etot − 4α = 4.48β

This stabilization can be compared with that of 4β that would be generated from two
isolated π bonds (i.e. in two isolated ethene molecules).

∆Edeloc = ∆E − 4β = 0.48β .

This energy provides a measure of the delocalization energy, the extra stabilization
that arises from delocalization of the electrons over the π system.



Bond order

Provides an indication of the strength of the π bond between adjacent atoms i and j

ρij =
∑

k

nk c
k
i c

k
j .

The sum is over MO’s k, with nk the occupation number of those orbitals. For butadiene

ρ12 = 2(0.37× 0.60) + 2(0.60× 0.37) = 0.89

ρ23 = 2(0.60× 0.60) + 2(0.37×−0.37) = 0.45

Suggests a partial π bond between the central atoms, so the terminal bonds might be
shorter than the central bond.

Bond lengths in excited states

Similar treatment for excited electronic state. a

E1

E2

E3

E4

ρ12 = 2(0.37× 0.60) + (0.60× 0.37) + (0.60×−0.37) = 0.45

ρ23 = 2(0.60× 0.60) + (0.37×−0.37) + (−0.37×−0.37) = 0.72

Outer bonds expand, inner bond contracts on excitation to the excited electronic state.

(See Spectroscopy lectures, and the Franck-Condon principle - vibrational excitation
accompanies electronic transition.)



ESR spectrum of the radical cation

a1

a2

H

H

H

H

H

H

a

E1

E2

E3

E4

The strength of the hyperfine coupling to the protons is proportional to the unpaired
electron density on the adjacent carbon atom.

For the butadiene cation, [C4H6]
+,

a1 = a(c21)
2 = a× 0.602 = 0.36a

a2 = a(c22)
2 = a× 0.372 = 0.14a

where a is a universal constant. The following spectrum is therefore predicted:

0.36a

0.14a

electron coupling to 4
almost equivalent H’s

electron coupling
to 2 equivalent H’s



Susceptibility to electrophilic attack

Rate of reaction is proportional to the barrier height. Estimate relative barriers for
different pathways.

∆E = ∆Eσ +∆Eπ

reactants

products

#

+ E
+

DE

E

E
or

+
H

H
H

+

{
Suppose that ∆Eσ is insensitive to position of attack.

∆Eπ = E♯
π − Ebutadiene

π = change in resonance stabilization

Ebutadiene
π = 4α+4.48β

Attack at central carbon

E♯
π(1) ≃ 2α+ 2β ♯ a bit like ethene

∆Eπ(1) = −2α− 2.48β

Attack at terminal carbon

E♯
π(2) ≃ 2α+2

√
2β ♯ a bit like allyl cation

∆Eπ(2) = −2α− 1.65β

Attack at terminal atom preferred.

Many approximate methods for calculating the localization energy have been devised
(e.g., frontier orbitals) - see recommended texts.









8: Applications of Hückel Theory

Aromaticity

π MOs of a cyclic polyene (N carbon atoms)

6

1

2

3

4

5

N=6







α− E β 0 0 0 β
β α− E β 0 0 0
0 β α− E β 0 0
0 0 β α− E β 0
0 0 0 β α− E β
β 0 0 0 β α− E













c1
c2
c3
c4
c5
c6







≡







x 1 0 0 0 1
1 x 1 0 0 0
0 1 x 1 0 0
0 0 1 x 1 0
0 0 0 1 x 1
1 0 0 0 1 x













c1
c2
c3
c4
c5
c6







= 0 ,

with x = (α− E)/β.

A general row of the secular equations gives

cn−1 + xcn + cn+1 = 0

For even membered rings (N = 2l where l is an integer)

c2l+n = cn



cont.

Hence try:

ckn = ei k2πn/2l coefficient on nth atom for kth MO

where

k = 0,±1,±2, · · · ,+l

Substitute ckn back into equation for coefficients

ei k2π(n−1)/2l + xei k2πn/2l + ei k2π(n+1)/2l = 0

or
(

e−ikπ/l + x+ eikπ/l
)

ei kπn/l = 0

or

x = −2cos
kπ

l
.

Therefore

Ek = α+ 2β cos
kπ

l
k = 0,±1,±2 · · · ,+l



cont.

Hence, the resulting energy levels can be displayed diagrammatically

Ek = α+2β cos
kπ

l
≡ α+2β cos θ k = 0,±1,±2 · · · ,+l ,

where θ = kπ/l correspond to the angles subtended by the vertices of a regular polyhedron.

a

a-2b

a+2b

q

E = 4α+4β ≡ two ethenes. No extra resonance stabilization
due to delocalization. Note unpaired electrons and degenerate
ground state.

a+b

a-2b

a+2b

a-b

a
E = 6α+8β, i.e. 2β lower than three ethenes - extra resonance
stabilization due to delocalization.

a

a-2b

a+2b

a-2 b
1/2

a+2 b
1/2

E = 8α+4(1+
√
2)β, i.e. 4(

√
2−1)β lower than four ethenes -

extra resonance stabilization but with unpaired electrons and
degenerate ground state.



cont.

For odd membered rings (N = 2l +1)

c2l+1+n = cn

Hence

ckn = ei k2πn/(2l+1) k = 0,±1,±2, · · · ,±l

Therefore

Ek = α+ 2β cos
2πk

2l+ 1
k = 0,±1,±2 · · · ,±l

a-b

a+2b

a+0.6b

a-1.6b

a+2b
a+1.3b

a-1.8b

a+2b

a-0.4b

Origin of the 4n+2 π-electron rule for stability of aromatic molecules.



Perturbation theory and steric interactions

Find approximately the properties of a system from those of a system with a slightly
different (simpler) Hamiltonian.

General result - just quote

“First order energy”

∆Ek = 〈Ψk |∆Ĥ |Ψk〉

• ∆Ek — change in energy of the kth orbital on perturbation

• Ψk — molecular orbital k of the original (unperturbed) problem

• ∆Ĥ — difference between the original Hamiltonian and the full one (i.e. the per-
turbation)



Example 1

Find the π MO energies of

H

H

H

H
O

1 2
3 4

having solved the butadiene problem.

The only major difference is in the energy of the oxygen atom pπ orbital with respect to
that of carbon, i.e.

〈p4 | Ĥ | p4〉 = αO < αC

However, we can estimate the energy lowering (∼ 0.6β) and can write

αO = αC + 0.6β

Now use butadiene MOs in

∆Ek = 〈Ψk |∆Ĥ |Ψk〉

= 〈
∑

i

cki pi |∆Ĥ |
∑

j

ckj pj〉

=
∑

i,j

cki c
k
j 〈pi |∆Ĥ | pj〉 (2)



cont.

But the only matrix element which is affected is 〈p4 | Ĥ | p4〉 such that

∆Ek = (ck4)
2 〈p4 |∆Ĥ | p4〉 = (ck4)

2 0.6β .

All other terms in Eqn. (2) are zero.

a+1.62b

a+0.62b

a-0.62b

a-1.62b

H

H

H

H
O

0.37 x 0.6
2

b

(-0.60) x 0.6
2

b

0.60 x 0.6
2

b

(-0.37) x 0.6
2

b

H

H

H

H

H

H



Example 2

In butadiene the π bond order between the central (2-3) atoms is less than the terminal
(1-2, 3-4) bonds.

H

H

H

H

H

H

r = 1.3A

r = 1.4AMatrix element H23 is less negative than H12 and H34. Let

H12 = H34 = β H23 = β + δ ,

where β is negative (as usual), but δ is positive.

Find shift in the MO energies due to this effect. Perturbation to Hamiltonian only involves
〈p2 | Ĥ | p3〉, therefore

∆Ek = (ck2c
k
3 + ck3c

k
2) 〈p2 |∆Ĥ | p3〉 = 2ck2c

k
3 δ .

a+1.62b

a+0.62b

a-0.62b

a-1.62b

2x0.60
2
d

-2x0.37
2
d

2x0.37
2
d

-2x0.60
2
d

Tending to the energy level pattern for two ethenes.



Non-crossing rule

Consider mixing of two orbitals φ1 and φ2

Ψ = c1φ1 + c2φ2 .

The orbitals φi could be the MOs that we have just been considering for butadiene.

We know that the energies of the mixed orbitals will be the solutions of the secular
equations (see Problem sheet 1)

E± =
1

2

{

(HAA +HBB)±
√

(HAA −HBB)
2 +4H2

AB

}

.

So E+ = E− only if HAB = 0.

In general, HAB = 0 only if the states have different symmetry (otherwise in region of
crossing there will always be some small term in the Hamiltonian which mixes the two
orbitals).

HBB

HAA

Bond length or
reaction coordinate

E
+

E
-

HAB

States of the same symmetry cannot cross.



Correlation diagrams

Non-crossing rule is helpful in determining reaction pathways based on orbital symmetry
arguments.

Consider the ring opening of cyclobutene.

A
B C

D
A

B
C

D

??
A

B D

C

Two categories of ring-opening.

A
B C

D

A

B D

C

conrotatory

C2

A or B

A
B

C
D

A

B D

C

disrotatory

sv

+ or -



cont.

The ground electronic state of cyclobutene (σ2π2) smoothly correlates with the ground
state (Ψ2

1Ψ
2
2) of butadiene in the conrotatory mode, giving

A
B C

D

for thermal reaction.

butadiene butadienecyclobutene

conrotatory disrotatory

Y1

Y2

Y3

Y4

Y1

Y2

Y3

Y4

s

p

p
*

s
*

B

B

A

A

B A

A B

+ +

+ -

- +

- -

From the first excited electronic state (σ2ππ∗) of cyclobutene there is a smooth correlation
with the excited state (Ψ2

1Ψ2Ψ3) of butadiene in the disrotatory mode, giving
A

B
C

D

for

photon-initiated reaction.

This is the basis of Woodward-Hoffmann rules.


