```
    Quantum beat spectroscopy
    as a probe of
angular momentum polarization in chemical processes.
```


Mark Brouard

The Department of Chemistry Oxford University

```
Gas Kinetics Meeting, Leeds, September 2007
```


The Pilling Legacy

Many thanks and happy 'retirement'!

Acknowledgements

The Group

Raluca Cireasa Visiting scientist
Chris Eyles
Yuan-Pin Chang
D.Phil. student
D.Phil. student
Alessandra Ia Via Part II student
Alistair Green Part II student
David Case Part II student
Nicholas Screen Part II student
Alexander Bryant Part II student

Acknowledgements

Collaborations

F. Javier Aoiz
Jaçek Kłos
Marcelo P. de Miranda

QCT calculations
PES and QM calculations
Stereodynamics

Funding

EPSRC
Royal Society

Collisional depolarization

Collisional depolarization

How easy is it to change the direction of J by collision?

Relevant to the detection of $\mathrm{OH}(\mathrm{X})$ or $\mathrm{NO}(\mathrm{X})$ by LIF.

Collisional depolarization

Can be characterized in terms of the angular momentum transferred, \boldsymbol{K}

Often assumed that \boldsymbol{K} is minimized in collisions

Angular distribution ($\mathrm{OH}(\mathrm{A})+\mathrm{Ar})$

QCT calculations by C.J. Eyles and F.J. Aoiz
New PES by J. Kłos and M.H. Alexander

Angular distribution

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \omega_{j j^{\prime}}}=\sigma\left[\sum_{n} \frac{(2 n+1)}{2} a_{n} P_{n}\left(\cos \theta_{j j^{\prime}}\right)\right]
$$

Disalignment (even terms)

$$
a_{2}=\left\langle P_{2}\left(\cos \theta_{\mathrm{j} j^{\prime}}\right)\right\rangle \quad-0.5 \leq a_{2} \leq+1.0
$$

Disorientation (odd terms)

$$
a_{1}=\left\langle P_{1}\left(\cos \theta_{\mathrm{jj}} \mathrm{j}\right)\right\rangle \quad-1.0 \leq a_{1} \leq+1.0
$$

Motivation

Rotational polarization

- Angular dependence of potential energy surface
- Mechanistic information

Aims

- Measure polarization using quantum beat spectroscopy.
- Weak magnetic field effects in chemistry.
- Control of angular momentum orientation and alignment.

Zeeman quantum beat spectroscopy

OH source and detection

Pump

$$
\mathrm{H}_{2} \mathrm{O}_{2}+h \nu \longrightarrow \mathrm{OH}\left(\mathrm{X}^{2} \Pi\right)+\mathrm{OH}\left(\mathrm{X}^{2} \Pi\right)
$$

Probe

$$
\begin{gathered}
\mathrm{OH}\left(\mathrm{X}^{2} \Pi\right)+h \nu^{\prime} \longrightarrow \mathrm{OH}\left(\mathrm{~A}^{2} \Sigma^{+}\right) \\
{\left[\text {or } \mathrm{NO}\left(\mathrm{X}^{2} \Pi\right)+h \nu^{\prime \prime} \longrightarrow \mathrm{NO}\left(\mathrm{~A}^{2} \Sigma^{+}\right)\right]}
\end{gathered}
$$

Use a long (250 ns or $10 \mu \mathrm{~s}$) pump-probe laser delay.

Experiment

Detect $\mathrm{OH}\left(\mathrm{X}^{2} \Pi\right)$ by polarized laser induced fluorescence...

...in presence of a weak magnetic field.

$\mathrm{OH}(\mathrm{X})$ spatial distribution

Spatial distribution of $\mathrm{OH}\left(\mathrm{X}^{2} \Pi\right)$ is nearly isotropic.

No net magnetic moment, no precession about the field

Initial $\mathrm{OH}(\mathrm{A})$ spatial distribution

Excite $\mathrm{OH}(\mathrm{X})$ with linearly polarized probe radiation.
Transition probability $\quad P \propto\left|\hat{\mu}_{\mathrm{OH}} \cdot \hat{\epsilon}_{\mathrm{a}}\right|^{2}$

Generates an aligned ensemble of excited $\mathrm{OH}\left(\mathrm{A}^{2} \Sigma^{+}\right)$radicals.

Zeeman quantum beats

Precesses in magnetic field with Larmor frequency, ω_{L}.

Observe emission through a linear polarizer.

Zeeman quantum beats

Alternative picture: $R_{11}(4) \uparrow$ transition

Coherent excitation of Zeeman levels.

Link with theory (linearly polarized light)

Initial aligned distribution

$$
P\left(\theta_{j}\right)=\frac{1}{2}\left[1+A_{20} P_{2}\left(\cos \theta_{j}\right)\right]
$$

Distribution after one collision

$$
P\left(\theta_{j^{\prime}}\right)=\frac{1}{2}\left[1+A_{20} a_{2} P_{2}\left(\cos \theta_{j^{\prime}}\right)\right]
$$

Collisional depolarization of
 $\mathrm{OH}(\mathrm{A})$ and $\mathrm{NO}(\mathrm{A})$ by Ar at 300 K

Zeeman quantum beats

No field: $\mathrm{OH} R_{11}(4) \uparrow$ transition

Exponential population decay

$$
\left[\mathrm{OH}^{*}\right]=\left[\mathrm{OH}^{*}\right]_{0} \mathrm{e}^{-k_{0} t}
$$

Zeeman quantum beats

Population decay

$$
\begin{gathered}
{\left[\mathrm{OH}^{*}\right]=\left[\mathrm{OH}^{*}\right]_{\mathrm{O}} \mathrm{e}^{-k_{0} t}} \\
k_{0}=k_{\mathrm{rad}}+k_{\mathrm{Q}}[\mathrm{Ar}]
\end{gathered}
$$

$k_{\text {rad }}$ - radiative decay $\left(\tau_{\text {rad }} \sim 700 \mathrm{~ns}\right.$ for $\left.\mathrm{OH}(\mathrm{A})\right)$
$k_{\mathrm{Q}} \quad-$ electronic quenching (relatively small for Ar)

Zeeman quantum beats

With field: $R_{11}(4) \uparrow$ transition

$$
H=4 \text { Gauss }
$$

$\left[\mathrm{OH}^{*}\right]=\left[\mathrm{OH}^{*}\right]_{0} \mathrm{e}^{-k_{0} t}\left\{1+C \mathrm{e}^{-k_{2} t} \sum_{F} \cos \left(2 \pi \omega_{\mathrm{L}} t+\phi\right)\right\}$

Zeeman quantum beats

$$
\left[\mathrm{OH}^{*}\right]=\left[\mathrm{OH}^{*}\right]_{0} \mathrm{e}^{-k_{0} t}\left\{1+C \mathrm{e}^{-k_{2} t} \sum_{F} \cos \left(2 \pi \omega_{\mathrm{L}} t+\phi\right)\right\}
$$

with

$$
\omega_{\mathrm{L}}=g_{F} \mu_{0} H / h
$$

Oscillations at two frequencies for $F=5$ and 6 .

Zeeman quantum beats

Depolarization and dephasing: Beat amplitude, C

$$
\left[\mathrm{OH}^{*}\right]=\left[\mathrm{OH}^{*}\right]_{0} \mathrm{e}^{-k_{0} t}\left\{1+C \mathrm{e}^{-k_{2} t} \sum_{F} \cos \left(2 \pi \omega_{\mathrm{L}} t+\phi\right)\right\}
$$

Proportional to rotational alignment of excited $\mathrm{OH}(\mathrm{A})$

Zeeman quantum beats

With Field: Pressure dependence.

Collisional population decay and depolarization

Zeeman quantum beats

Depolarization and dephasing

$$
\begin{gathered}
{\left[\mathrm{OH}^{*}\right]=\left[\mathrm{OH}^{*}\right]_{0} \mathrm{e}^{-k_{0} t}\left\{1+C \mathrm{e}^{-k_{2} t} \sum_{F} \cos \left(2 \pi \omega_{\mathrm{L}} t+\phi\right)\right\}} \\
k_{2}=k_{\text {inhom }}+k_{\mathrm{d}}[\mathrm{Ar}]
\end{gathered}
$$

$k_{\text {inhom }}$ - dephasing by field inhomogeneities
$k_{\mathrm{d}} \quad-$ collisional depolarization by $\operatorname{Ar}\left(k_{\mathrm{d}} \sim v_{\mathrm{rel}} \sigma_{\mathrm{d}}\right)$

Link with theory

Depolarization rate constant, $k_{\mathrm{d}} \sim v_{\text {rel }} \sigma_{\mathrm{d}}$

$$
k_{\mathrm{d}}=k_{\mathrm{C}}\left(1-a_{2}\right)
$$

where k_{c} is the collision rate constant (e.g., for energy transfer)

Three cases:

1. $a_{2}=+1.0 \quad k_{\mathrm{d}}=0$ no depolarization
2. $a_{2}=0.0 \quad k_{\mathrm{d}}=k_{\mathrm{c}} \quad$ depolarization rate same as collision rate
3. $a_{2}=-0.5 k_{\mathrm{d}}=1.5 k_{\mathrm{c}}$ depolarization faster than the collision rate

Zeeman quantum beats

Trends in depolarization cross-sections:

Cross-sections are large (long range interaction).
Cross-sections decrease with N^{\prime} (angular momentum conservation).

Zeeman quantum beats

Collisional processes leading to depolarization

Inelastic depolarization (rotational energy transfer)
Elastic depolarization (velocity changing)

Zeeman quantum beats

Comparison with rotational energy transfer:

$$
\mathrm{OH}(\mathrm{~A})+\mathrm{Ar}(300 \mathrm{~K})
$$

Depolarization more efficient than RET ($a_{2} \lesssim 0$ for this system) Elastic contribution to $\sigma_{\mathrm{d}} \sim 20 \AA^{2}$ for $N=4 \ddagger$ \ddagger E.A. Brinkman and D.R. Crosley J. Chem. Phys. (2004)

Zeeman quantum beats

Caveat: we detect unresolved $O H(A)$ emission

- Populated levels have different g_{F} values - leads to a dephasing
- Important for spin-rotation changing collisions
- Effects can be accounted for, although better to resolve emission

Comparison with hyperfine quantum beats: NO(A)

Coherent superposition of hyperfine levels (Low N^{\prime})

Observe two of the three Hyperfine beat frequencies.

Hyperfine quantum beats: $\mathrm{NO}(\mathrm{A})$

Initial distribution of J

Nuclear spin, I, initially unpolarized.

Hyperfine quantum beats: $\mathrm{NO}(\mathrm{A})$

Alignment of J reduced

Nuclear spin, \boldsymbol{I}, becomes aligned.

Hyperfine quantum beats: $\mathrm{NO}(\mathrm{A})$

Alignment of J and I cycle in time

See T.P. Rakitzis, Phys. Rev. Lett. (2005)

Hyperfine quantum beats: $\mathrm{NO}(\mathrm{A})$

Beat signal

Amplitude decreases rapidly with J.

Hyperfine quantum beats: NO(A)

Depolarization cross-sections

	- 'Hyperfine' • 'Zeeman'
$\mathrm{NO}(\mathrm{A})+\mathrm{Ar}(300 \mathrm{~K})$	

Reasonable agreement between hyperfine and Zeeman beat data

Depolarization is less efficient than RET $\left(a_{2}>0\right.$ for $\left.N O(A)+A r\right)$

Trends in depolarization cross-sections

$\mathrm{OH}(\mathrm{A})+\mathrm{Ar}$ versus $\mathrm{NO}(\mathrm{A})+\mathrm{Ar}$ at 300 K

Well-depth for $\mathrm{NO}(\mathrm{A})+\mathrm{Ar}$ is one tenth that of $\mathrm{OH}(\mathrm{A})+\mathrm{Ar}$ Balanced by kinematic/energetic factors

$\mathrm{OH}(\mathrm{A})+\mathrm{Ar}$ potential

Strongly attractive and highly anisotropic PES

Well depth $\sim 1600 \mathrm{~cm}^{-1}$

$\mathrm{NO}(\mathrm{A})+$ Ar potential

Very weakly attractive PES

$D_{0} \sim 44 \mathrm{~cm}^{-1} \ddagger$
\ddagger T.G. Wright and coworkers, J. Chem. Phys. (2000)

Role of electron and nuclear spin

Spin is a spectator in ${ }^{2} \Sigma^{+}$radicals

Spin-rotation changing collisions only occur if \mathbf{N} is strongly depolarized.

$\mathrm{OH}(\mathrm{A})+\mathrm{Ar}$ and spin-rotation changing collisions

Play an important role for $\mathrm{OH}(\mathrm{A})+\mathrm{Ar}$ QCT calculations by C.J. Eyles and F.J. Aoiz

QM and new PES by J. Kłos and M.H. Alexander

$\mathrm{OH}(\mathrm{A})+\mathrm{Ar}$ and spin-rotation changing collisions

	Increasing $\boldsymbol{K} \longrightarrow$
QCT calculations by C.J. Eyles and F.J. Aoiz New PES by J. Kłos and M.H. Alexander	

Spin-rotation changing collisions require large K
These are enhanced for $\mathrm{OH}(\mathrm{A})+\mathrm{Ar}$ by the deep well

$\mathrm{OH}(\mathrm{A})+\mathrm{Ar}$ and rotational energy transfer

'Disalignment' coefficients

QCT calculations by C.J. Eyles and F.J. Aoiz
New PES by J. Kłos and M.H. Alexander

Final thought

‘Disorientation’ coefficients?

Provides a means of measuring $a_{1}=\left\langle P_{1}(\cos (\theta))\right\rangle$

Zeeman quantum beats

Collisional depolarization: Some conclusions.

- Less efficient at high N^{\prime} - angular momentum conservation.
- Attractive long-range interaction plays crucial role.
- Both elastic and inelastic depolarization can be important.
- Depolarization efficiency relative to RET is very system dependent.
- For ${ }^{2} \Sigma^{+}$radicals S and I are spectators in the collision.
- σ_{d} is large for spin-rotation and hyperfine state-changing collisions.

The End

