Quantum beat studies of angular momentum polarization in chemical processes.

Mark Brouard

The Department of Chemistry Oxford University

The Group

Chris Eyles Yuan-Pin Chang Helen Chadwick	D.Phil. studen D.Phil. studen D.Phil. studen	t t
Alexander Johnsen	D.Phil. studen	t
Ewen Campbell	D.Phil. studen	t
Weihao Yuen	D.Phil. studen	t

Former

Raluca Cireasa	Visiting scientist
Alessandra la Via	Part II student
Alistair Green	Part II student
David Case	Part II student
Nicholas Screen	Part II student
Alexander Bryant	Part II student
Fabio Quadrini	Part II student

Collaborations

F. Javier Aoiz

QCT calculations

Jaçek KłosPES & QM calculationsMillard H. AlexanderPES & QM calculations

Marcelo P. de Miranda

Stereodynamics

Steven Stolte

He/Ar + NO(X)

Funding

EPSRC Royal Society Quantum beat spectroscopy

Applications to:

Collisional depolarization: this talk

Molecular photodissociation: poster (Yuan-Pin Chang)

Future directions: poster (Yuan-Pin Chang)

Rotational polarization

- Angular dependence of potential energy surfaces
- Mechanistic information

Aims

- Measure polarization using quantum beat spectroscopy.
- Weak magnetic field effects in chemistry.
- Control of angular momentum orientation and alignment.

Collisional depolarization

Collisional depolarization

How easy is it to change the direction of J by collision?

Relevant to the detection of OH(X) or NO(X) by LIF.

Collisional depolarization

Can be characterized in terms of the angular momentum transferred, $m{K}$

Often assumed that K is minimized in collisions

Angular distribution (OH(A) + Ar)

QCT calculations by C.J. Eyles and F.J. Aoiz

New PES by J. Kłos and M.H. Alexander

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\omega_{jj'}} = \sigma \left[\sum_{n} \frac{(2n+1)}{2} a_n P_n(\cos\theta_{jj'}) \right]$$

'Disalignment' (even terms)

$$a_2 = \langle P_2(\cos\theta_{j\,j'})\rangle \qquad -0.5 \le a_2 \le +1.0$$

'Disorientation' (odd terms)

$$\mathbf{a_1} = \langle P_1(\cos\theta_{j\,j'}) \rangle \qquad -1.0 \le a_1 \le +1.0$$

Zeeman quantum beat spectroscopy

Pump

$$H_2O_2 + h\nu \longrightarrow OH(X^2\Pi) + OH(X^2\Pi)$$

Probe

$$OH(X^{2}\Pi) + h\nu' \longrightarrow OH(A^{2}\Sigma^{+})$$

[or NO(X^{2}\Pi) + $h\nu'' \longrightarrow NO(A^{2}\Sigma^{+})$]

Use a 10 μ s pump-probe laser delay.

Only 300 K results presented (superthermal studies also conducted).

Detect $OH(X^2\Pi)$ by *polarized* laser induced fluorescence...

...in presence of a *weak magnetic field*.

OH(X) spatial distribution

Spatial distribution of $OH(X^2\Pi)$ is nearly *isotropic*.

No net magnetic moment, no precession about the field

Initial OH(A) spatial distribution

Excite OH(X) with *linearly* polarized probe radiation.

Transition probability $P \propto |\hat{\mu}_{OH} \cdot \hat{\epsilon}_a|^2$

Generates an *aligned* ensemble of excited $OH(A^2\Sigma^+)$ radicals.

Precesses in magnetic field with Larmor frequency, ω_{L} .

Observe emission through a *linear polarizer*.

Alternative picture: $R_{11}(4) \uparrow$ transition

Coherent excitation of Zeeman levels.

Initial aligned distribution

$$P(\theta_j) = \frac{1}{2} \left[1 + A_{20} P_2(\cos \theta_j) \right]$$

Distribution after one collision

$$P(\theta_{j'}) = \frac{1}{2} \left[1 + A_{20} \, a_2 \, P_2(\cos \theta_{j'}) \right]$$

Collisional depolarization of OH(A) and NO(A) by Ar

No field: OH $R_{11}(4) \uparrow$ transition

Exponential *population* decay

$$[OH^*] = [OH^*]_0 e^{-k_0 t}$$

Population decay

$$[OH^*] = [OH^*]_0 e^{-k_0 t}$$

$$k_0 = k_{rad} + k_Q[Ar]$$

 k_{rad} - radiative decay ($\tau_{rad} \sim 700 \text{ ns for OH(A)}$)

 k_{Q} - electronic quenching (relatively small for Ar)

With field: $R_{11}(4) \uparrow$ transition (unresolved emission)

 $[OH^*] = [OH^*]_0 e^{-k_0 t} \{1 + C e^{-k_2 t} \sum_F \cos(2\pi\omega_L t + \phi)\}$

$$[OH^*] = [OH^*]_0 e^{-k_0 t} \{1 + C e^{-k_2 t} \sum_F \cos(2\pi\omega_L t + \phi)\}$$

with

 $\omega_{\rm L} = g_F \mu_0 H/h$

Oscillations at *two frequencies* for F = 5 and 6.

Depolarization and dephasing: Beat amplitude, C

$$[OH^*] = [OH^*]_0 e^{-k_0 t} \{1 + C e^{-k_2 t} \sum_F \cos(2\pi\omega_L t + \phi)\}$$

Proportional to rotational alignment of excited OH(A)

Orientation signal with resolved emission branch:

Proportional to *rotational orientation* of excited OH(A)

With Field: Pressure dependence.

Collisional *population decay* and *depolarization*

Depolarization and dephasing

$$[OH^*] = [OH^*]_0 e^{-k_0 t} \{1 + C e^{-k_2 t} \sum_F \cos(2\pi\omega_L t + \phi)\}$$

$$k_2 = k_{\text{inhom}} + k_{\text{d}}^{(2)} \text{ [Ar]}$$

 k_{inhom} - dephasing by field inhomogeneities

$$k_{\rm d}^{(2)}$$
 - collisional depolarization by Ar $(k_{\rm d}^{(2)} \sim v_{\rm rel}\sigma_{\rm d}^{(2)})$

Link with theory - e.g., for disalignment

Depolarization rate constant, $k_d^{(2)} \sim v_{rel} \sigma_d^{(2)}$

$$k_{\rm d}^{(2)} = k_{\rm C} \left(1 - a_2\right)$$

where $k_{\rm C}$ is the collision rate constant (e.g., for energy transfer)

Three cases:

1. $a_2 = +1.0$ $k_d^{(2)} = 0$ no depolarization2. $a_2 = 0.0$ $k_d^{(2)} = k_c$ depolarization rate same as collision rate3. $a_2 = -0.5$ $k_d^{(2)} = 1.5k_c$ depolarization faster than collision rate

Trends in depolarization cross-sections

Cross-sections are *large* (long range interaction).

Cross-sections decrease with N (angular momentum conservation).

'Disalignment' more probable than ('disorientation').

Collisional processes leading to depolarization

Inelastic depolarization (rotational energy transfer)

Elastic depolarization $(M_j$ -changing)

Comparison with rotational energy transfer

Depolarization more efficient than RET ($a_2 \lesssim 0$)

Caveat: we detect unresolved OH(A) emission

- Populated levels have different g_F values leads to a dephasing
- Important for spin-rotation changing collisions
- Effects can be accounted for, although better to resolve emission

Employ higher resolution emission

Previous work: elastic contribution to $\sigma_{\rm d}^{(2)} \sim 20 \,{\rm \AA}^2$ for N=4 [‡]

[‡] E.A. Brinkman and D.R. Crosley J. Chem. Phys. (2004)

Comparison with hyperfine quantum beats: NO(A)

Coherent superposition of hyperfine levels (Low N)

Observe two of the three Hyperfine beat frequencies.

Initial distribution of **J**

Nuclear spin, *I*, initially unpolarized.

Alignment of J reduced

Nuclear spin, *I*, becomes aligned.

Alignment of J and I cycle in time

See T.P. Rakitzis, Phys. Rev. Lett. (2005)

Beat signal

Amplitude decreases rapidly with J.

Depolarization cross-sections

Reasonable agreement between hyperfine and Zeeman beat data

Depolarization has similar efficiency to RET $(a_2 \gtrsim 0)$.

OH(A) + Ar versus NO(A) + Ar at 300 K

Well-depth for NO(A)+Ar is one tenth that of OH(A) + Ar

Balanced by kinematic/energetic factors and differences in a_k parameters

OH(A) + Ar potential

Strongly attractive and highly anisotropic PES

Well depth $\sim 1600 \, \mathrm{cm}^{-1}$

Very weakly attractive PES

 $D_0 \sim 44 \, {\rm cm}^{-1}$ ‡

[‡] T.G. Wright and coworkers, J. Chem. Phys. (2000)

RET cross-sections (N = 5)

Changing PES makes a factor of \sim 2 difference in $\sigma_{\rm C}$

Depolarization cross-sections at 300 K

These differences mainly due to the PES

RET cross-sections (N = 7)

These differences mainly due to the PES and not kinematics

‡ Experiments of Imajo et al. Chem. Phys. Lett. (1987).

Spin is a spectator in $^{2}\Sigma^{+}$ radicals

Spin-rotation changing collisions only occur if N is strongly depolarized.

OH(A) + Ar and spin-rotation changing collisions

Spin-rotation changing collisions play an important role for OH(A) + Ar

OH(A) + **Ar** and **spin**-rotation changing collisions

Spin-rotation changing collisions require large K

These are enhanced for OH(A) + Ar by the deep well

'Disalignment' coefficients

QCT calculations by C.J. Eyles and F.J. Aoiz New PES by J. Kłos and M.H. Alexander

OH(A) + **Ar** and hyperfine changing collisions

Also play an important role for OH(A) and NO(A) + Ar

QCT calculations by C.J. Eyles and F.J. Aoiz

QM and new PES by J. Kłos and M.H. Alexander

NO(A) + Ar and hyperfine changing collisions

'Disorientation' coefficients

QCT calculations by C.J. Eyles, H. Chadwick and F.J. Aoiz

New PES by J. Kłos and M.H. Alexander

Full simulation of experiment

NO(A) + Ar

OH(A) + Ar

Mechanisms of depolarization

Impulsive collision conserve projection of j (M_a) along kinematic apse

$$\widehat{a}_{\mathsf{k}} = rac{k'-k}{|k'-k|}$$

NO(A) + Ar tends to be impulsive.

OH(A) + Ar is impulsive only for larger Δj .

NO(A) + Ar tends to be impulsive $(a_k \gtrsim 0)$.

OH(A) + Ar is not impulsive at low Δj ($a_k \lesssim 0$).

'Roaming' trajectories seen at low Δj for OH(A) + Ar

Complex trajectories seen at low Δj for OH(A) + Ar

OH(A) + Ar and the role of OH(A)—Ar complexes.

QM calculations by J. Kløs and C.J. Eyles QM and new PES by J. Kłos and M.H. Alexander Collisional depolarization: Some conclusions.

- Less efficient at high N angular momentum conservation.
- Attractive long-range interaction plays crucial role for OH(A)+Ar.
- Both elastic and inelastic depolarization are important.
- Depolarization efficiency relative to RET is very system dependent.
- For ${}^{2}\Sigma^{+}$ radicals S and I are spectators in the collision.
- The effects of S and I can be accommodated in QCT calculations.
- $\sigma_d^{(k)}$ are large for spin-rotation and hyperfine state-changing collisions.

