Quantum beat studies
 of angular momentum polarization in chemical processes.

Mark Brouard

The Department of Chemistry
Oxford University

MOLEC XVII August 2008

Acknowledgements

The Group
Chris Eyles
D.Phil. student
Yuan-Pin Chang
D.Phil. student
Helen Chadwick
D.Phil. student
Alexander Johnsen D.Phil. student
Ewen Campbell D.Phil. student

Former

Raluca Cireasa	Visiting scientist
Alessandra la Via	Part II student
Alistair Green	Part II student
David Case	Part II student
Nicholas Screen	Part II student
Alexander Bryant	Part II student
Fabio Quadrini	Part II student

Acknowledgements

Collaborations
F. Javier Aoiz

Jaçek Kłos
Millard H. Alexander
Marcelo P. de Miranda
Steven Stolte

QCT calculations

PES \& QM calculations
PES \& QM calculations
Stereodynamics
$\mathrm{He} / \mathrm{Ar}+\mathrm{NO}(\mathrm{X})$

Funding

EPSRC
Royal Society

Plan

Quantum beat spectroscopy

Applications to:

Collisional depolarization: this talk

Molecular photodissociation: poster (Yuan-Pin Chang)

Future directions: poster (Yuan-Pin Chang)

Motivation

Rotational polarization

- Angular dependence of potential energy surfaces
- Mechanistic information

Aims

- Measure polarization using quantum beat spectroscopy.
- Weak magnetic field effects in chemistry.
- Control of angular momentum orientation and alignment.

Collisional depolarization

Collisional depolarization

How easy is it to change the direction of J by collision?

Relevant to the detection of $\mathrm{OH}(\mathrm{X})$ or $\mathrm{NO}(\mathrm{X})$ by LIF.

Collisional depolarization

Can be characterized in terms of the angular momentum transferred, \boldsymbol{K}

Often assumed that \boldsymbol{K} is minimized in collisions

Angular distribution (OH(A) + Ar)

QCT calculations by C.J. Eyles and F.J. Aoiz

New PES by J. Kłos and M.H. Alexander

Angular distribution

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \omega_{j j^{\prime}}}=\sigma\left[\sum_{n} \frac{(2 n+1)}{2} a_{n} P_{n}\left(\cos \theta_{j j^{\prime}}\right)\right]
$$

‘Disalignment' (even terms)

$$
a_{2}=\left\langle P_{2}\left(\cos \theta_{\mathrm{j} \mathrm{j}^{\prime}}\right)\right\rangle \quad-0.5 \leq a_{2} \leq+1.0
$$

'Disorientation' (odd terms)

$$
a_{1}=\left\langle P_{1}\left(\cos \theta_{\mathrm{jj}}{ }^{\prime}\right)\right\rangle \quad-1.0 \leq a_{1} \leq+1.0
$$

Zeeman quantum beat spectroscopy

OH source and detection

Pump

$$
\mathrm{H}_{2} \mathrm{O}_{2}+h \nu \longrightarrow \mathrm{OH}\left(\mathrm{X}^{2} \Pi\right)+\mathrm{OH}\left(\mathrm{X}^{2} \Pi\right)
$$

Probe

$$
\begin{gathered}
\mathrm{OH}\left(\mathrm{X}^{2} \Pi\right)+h \nu^{\prime} \longrightarrow \mathrm{OH}\left(\mathrm{~A}^{2} \Sigma^{+}\right) \\
{\left[\text {or } \mathrm{NO}\left(\mathrm{X}^{2} \Pi\right)+h \nu^{\prime \prime} \longrightarrow \mathrm{NO}\left(\mathrm{~A}^{2} \Sigma^{+}\right)\right]}
\end{gathered}
$$

Use a 10μ s pump-probe laser delay.
Only 300 K results presented (superthermal studies also conducted).

Experiment

Detect $\mathrm{OH}\left(\mathrm{X}^{2} \Pi\right)$ by polarized laser induced fluorescence...

...in presence of a weak magnetic field.

$\mathrm{OH}(\mathrm{X})$ spatial distribution

Spatial distribution of $\mathrm{OH}\left(\mathrm{X}^{2} \Pi\right)$ is nearly isotropic.

No net magnetic moment, no precession about the field

Initial $\mathrm{OH}(\mathrm{A})$ spatial distribution

Excite $\mathrm{OH}(\mathrm{X})$ with linearly polarized probe radiation.
Transition probability $\quad P \propto\left|\hat{\mu}_{\mathrm{OH}} \cdot \hat{\epsilon}_{\mathrm{a}}\right|^{2}$

Generates an aligned ensemble of excited $\mathrm{OH}\left(\mathrm{A}^{2} \Sigma^{+}\right)$radicals.

Zeeman quantum beats

Precesses in magnetic field with Larmor frequency, ω_{L}.

Observe emission through a linear polarizer.

Zeeman quantum beats

Alternative picture: $R_{11}(4) \uparrow$ transition

Coherent excitation of Zeeman levels.

Link with theory (linearly polarized light)

Initial aligned distribution

$$
P\left(\theta_{j}\right)=\frac{1}{2}\left[1+A_{20} P_{2}\left(\cos \theta_{j}\right)\right]
$$

Distribution after one collision

$$
P\left(\theta_{j^{\prime}}\right)=\frac{1}{2}\left[1+A_{20} a_{2} P_{2}\left(\cos \theta_{j^{\prime}}\right)\right]
$$

Collisional depolarization of
 $\mathrm{OH}(\mathrm{A})$ and $\mathrm{NO}(\mathrm{A})$ by Ar

Zeeman quantum beats

No field: $\mathrm{OH} R_{11}(4) \uparrow$ transition

Exponential population decay

$$
\left[\mathrm{OH}^{*}\right]=\left[\mathrm{OH}^{*}\right]_{0} \mathrm{e}^{-k_{0} t}
$$

Zeeman quantum beats

Population decay

$$
\begin{gathered}
{\left[\mathrm{OH}^{*}\right]=\left[\mathrm{OH}^{*}\right]_{\mathrm{O}} \mathrm{e}^{-k_{0} t}} \\
k_{0}=k_{\mathrm{rad}}+k_{\mathrm{Q}}[\mathrm{Ar}]
\end{gathered}
$$

$k_{\text {rad }}$ - radiative decay $\left(\tau_{\text {rad }} \sim 700 \mathrm{~ns}\right.$ for $\left.\mathrm{OH}(\mathrm{A})\right)$
$k_{\mathrm{Q}} \quad-$ electronic quenching (relatively small for Ar)

Zeeman quantum beats

With field: $R_{11}(4) \uparrow$ transition (unresolved emission)

$\left[\mathrm{OH}^{*}\right]=\left[\mathrm{OH}^{*}\right]_{0} \mathrm{e}^{-k_{0} t}\left\{1+C \mathrm{e}^{-k_{2} t} \sum_{F} \cos \left(2 \pi \omega_{\mathrm{L}} t+\phi\right)\right\}$

Zeeman quantum beats

$$
\left[\mathrm{OH}^{*}\right]=\left[\mathrm{OH}^{*}\right]_{0} \mathrm{e}^{-k_{0} t}\left\{1+C \mathrm{e}^{-k_{2} t} \sum_{F} \cos \left(2 \pi \omega_{\mathrm{L}} t+\phi\right)\right\}
$$

with

$$
\omega_{\mathrm{L}}=g_{F} \mu_{0} H / h
$$

Oscillations at two frequencies for $F=5$ and 6 .

Zeeman quantum beats

Depolarization and dephasing: Beat amplitude, C

$$
\left[\mathrm{OH}^{*}\right]=\left[\mathrm{OH}^{*}\right]_{0} \mathrm{e}^{-k_{0} t}\left\{1+C \mathrm{e}^{-k_{2} t} \sum_{F} \cos \left(2 \pi \omega_{\mathrm{L}} t+\phi\right)\right\}
$$

Proportional to rotational alignment of excited $\mathrm{OH}(\mathrm{A})$

Zeeman quantum beats

Orientation signal with resolved emission branch:

Proportional to rotational orientation of excited $\mathrm{OH}(\mathrm{A})$

Zeeman quantum beats

With Field: Pressure dependence.

Collisional population decay and depolarization

Zeeman quantum beats

Depolarization and dephasing

$$
\left[\mathrm{OH}^{*}\right]=\left[\mathrm{OH}^{*}\right]_{0} \mathrm{e}^{-k_{0} t}\left\{1+C \mathrm{e}^{-k_{2} t} \sum_{F} \cos \left(2 \pi \omega_{\mathrm{L}} t+\phi\right)\right\}
$$

$$
k_{2}=k_{\text {inhom }}+k_{\mathrm{d}}^{(2)}[\mathrm{Ar}]
$$

$k_{\text {inhom }}-$ dephasing by field inhomogeneities

$$
k_{\mathrm{d}}^{(2)} \quad \text { - collisional depolarization by } \operatorname{Ar}\left(k_{\mathrm{d}}^{(2)} \sim v_{\mathrm{rel}} \sigma_{\mathrm{d}}^{(2)}\right)
$$

Link with theory - e.g., for disalignment

Depolarization rate constant, $k_{\mathrm{d}}^{(2)} \sim v_{\mathrm{rel}} \sigma_{\mathrm{d}}^{(2)}$

$$
k_{\mathrm{d}}^{(2)}=k_{\mathrm{c}}\left(1-a_{2}\right)
$$

where k_{c} is the collision rate constant (e.g., for energy transfer)

Three cases:

1. $a_{2}=+1.0 \quad k_{\mathrm{d}}^{(2)}=0$
no depolarization
2. $a_{2}=0.0 \quad k_{\mathrm{d}}^{(2)}=k_{\mathrm{c}} \quad$ depolarization rate same as collision rate
3. $a_{2}=-0.5 \quad k_{\mathrm{d}}^{(2)}=1.5 k_{\mathrm{c}} \quad$ depolarization faster than collision rate

Trends in depolarization cross-sections

$\mathrm{OH}(\mathrm{A})+\mathrm{Ar}(300 \mathrm{~K})$

‘Disorientation’

'Disalignment'

Cross-sections are large (long range interaction). Cross-sections decrease with N (angular momentum conservation). 'Disalignment' more probable than ('disorientation').

Zeeman quantum beats

Collisional processes leading to depolarization

Inelastic depolarization (rotational energy transfer)
Elastic depolarization (M_{j}-Changing)

Comparison with rotational energy transfer

$\mathrm{OH}(\mathrm{A})+\mathrm{Ar}(300 \mathrm{~K})$

‘Disorientation'

‘Disalignment’

Depolarization more efficient than RET ($a_{2} \lesssim 0$)

Zeeman quantum beats

Caveat: we detect unresolved $O H(A)$ emission

- Populated levels have different g_{F} values - leads to a dephasing
- Important for spin-rotation changing collisions
- Effects can be accounted for, although better to resolve emission

Elastic depolarization

Employ higher resolution emission

$\mathrm{OH}(\mathrm{A})+\mathrm{Ar}(300 \mathrm{~K})$

‘Disorientation'

‘Disalignment'

Previous work: elastic contribution to $\sigma_{\mathrm{d}}^{(2)} \sim 20 \AA^{2}$ for $N=4 \ddagger$ \ddagger E.A. Brinkman and D.R. Crosley J. Chem. Phys. (2004)

Comparison with hyperfine quantum beats: NO(A)

Coherent superposition of hyperfine levels (Low N)

Observe two of the three Hyperfine beat frequencies.

Hyperfine quantum beats: $\mathrm{NO}(\mathrm{A})$

Initial distribution of J

Nuclear spin, I, initially unpolarized.

Hyperfine quantum beats: $\mathrm{NO}(\mathrm{A})$

Alignment of J reduced

Nuclear spin, \boldsymbol{I}, becomes aligned.

Hyperfine quantum beats: $\mathrm{NO}(\mathrm{A})$

Alignment of J and I cycle in time

See T.P. Rakitzis, Phys. Rev. Lett. (2005)

Hyperfine quantum beats: $\mathrm{NO}(\mathrm{A})$

Beat signal

Amplitude decreases rapidly with J.

Hyperfine quantum beats: $N O(A)$

Depolarization cross-sections

$\mathrm{NO}(\mathrm{A})+\mathrm{Ar}(300 \mathrm{~K})$

- 'Hyperfine’ • 'Zeeman'

Reasonable agreement between hyperfine and Zeeman beat data Depolarization has similar efficiency to RET ($a_{2} \gtrsim 0$).

Trends in depolarization cross-sections

$\mathrm{OH}(\mathrm{A})+\mathrm{Ar}$ versus $\mathrm{NO}(\mathrm{A})+\mathrm{Ar}$ at 300 K

Well-depth for $\mathrm{NO}(\mathrm{A})+\mathrm{Ar}$ is one tenth that of $\mathrm{OH}(\mathrm{A})+\mathrm{Ar}$ Balanced by kinematic/energetic factors and differences in a_{k} parameters

$\mathrm{OH}(\mathrm{A})+\mathrm{Ar}$ potential

Strongly attractive and highly anisotropic PES
J. Kłos and M.H. Alexander et
al., J. Chem. Phys. (2008)

Well depth $\sim 1600 \mathrm{~cm}^{-1}$

$\mathrm{NO}(\mathrm{A})+$ Ar potential

Very weakly attractive PES

$D_{0} \sim 44 \mathrm{~cm}^{-1} \ddagger$
\ddagger T.G. Wright and coworkers, J. Chem. Phys. (2000)

Kinematics or dynamics?

RET cross-sections ($N=5$)

Changing PES makes a factor of ~ 2 difference in σ_{C}
QCT calculations by C.J. Eyles, H. Chadwick and F.J. Aoiz
New PES by J. Kłos and M.H. Alexander

Kinematics or dynamics?

Depolarization cross-sections at 300 K

These differences mainly due to the PES

Kinematics or dynamics?

RET cross-sections ($N=7$)

These differences mainly due to the PES and not kinematics
\ddagger Experiments of Imajo et al. Chem. Phys. Lett. (1987).

Role of electron and nuclear spin

Spin is a spectator in ${ }^{2} \Sigma^{+}$radicals

Spin-rotation changing collisions only occur if \mathbf{N} is strongly depolarized.

$\mathrm{OH}(\mathrm{A})+\mathrm{Ar}$ and spin-rotation changing collisions

- - CC QM (o-s)

- - QCT (o-s)

Spin-rotation changing collisions play an important role for $\mathrm{OH}(\mathrm{A})+\mathrm{Ar}$ QCT calculations by C.J. Eyles and F.J. Aoiz QM and new PES by J. Kłos and M.H. Alexander

$\mathrm{OH}(\mathrm{A})+\mathrm{Ar}$ and spin-rotation changing collisions

QCT calculations by C.J. Eyles

Spin-rotation changing collisions require large K
These are enhanced for $\mathrm{OH}(\mathrm{A})+\mathrm{Ar}$ by the deep well

$\mathrm{OH}(\mathrm{A})+\mathrm{Ar}$ and spin-rotation changing collisions

‘Disalignment' coefficients

QCT calculations by C.J. Eyles and F.J. Aoiz
New PES by J. Kłos and M.H. Alexander

$\mathrm{OH}(\mathrm{A})+\mathrm{Ar}$ and hyperfine changing collisions

Also play an important role for $\mathrm{OH}(\mathrm{A})$ and $\mathrm{NO}(\mathrm{A})+\mathrm{Ar}$
QCT calculations by C.J. Eyles and F.J. Aoiz
QM and new PES by J. Kłos and M.H. Alexander

$\mathrm{NO}(\mathrm{A})+\mathrm{Ar}$ and hyperfine changing collisions

'Disorientation' coefficients

$$
N=2, j=1.5, F=2.5
$$

Spin-rotation conserving
Spin-rotation changing

QCT calculations by C.J. Eyles, H. Chadwick and F.J. Aoiz
New PES by J. Kłos and M.H. Alexander

Full simulation of experiment

$\mathrm{NO}(\mathrm{A})+\mathrm{Ar}$

- QCT (o-s) theory
- Experiment

QCT calculations by C.J. Eyles, H. Chadwick, and F.J. Aoiz QM and new PES by J. Kłos and M.H. Alexander

Full simulation of experiment

$\mathrm{OH}(\mathrm{A})+\mathrm{Ar}$

QCT calculations by C.J. Eyles, H. Chadwick and F.J. Aoiz QM and new PES by J. Kłos and M.H. Alexander

Mechanisms of depolarization

Impulsive collision conserve projection of $j\left(M_{a}\right)$ along kinematic apse

$$
\widehat{\boldsymbol{a}}_{\mathrm{k}}=\frac{\boldsymbol{k}^{\prime}-\boldsymbol{k}}{\left|\boldsymbol{k}^{\prime}-\boldsymbol{k}\right|}
$$

Mechanisms of depolarization

$\mathrm{NO}(\mathrm{A})+\mathrm{Ar}$ tends to be impulsive.

$\mathrm{OH}(\mathrm{A})+\mathrm{Ar}$ is impulsive only for larger Δj.
QCT calculations by C.J. Eyles, H. Chadwick and F.J. Aoiz QM and new PES by J. Kłos and M.H. Alexander

Mechanisms of depolarization

$\mathrm{NO}(\mathrm{A})+\mathrm{Ar}$ tends to be impulsive $\left(a_{k} \gtrsim 0\right)$.

QCT calculations by C.J. Eyles, H. Chadwick and F.J. Aoiz QM and new PES by J. Kłos and M.H. Alexander

Mechanisms of depolarization

$\mathrm{OH}(\mathrm{A})+\mathrm{Ar}$ is not impulsive at low $\Delta j\left(a_{k} \lesssim 0\right)$.

QCT calculations by C.J. Eyles, H. Chadwick and F.J. Aoiz QM and new PES by J. Kłos and M.H. Alexander

Mechanisms of depolarization

'Roaming' trajectories seen at low Δj for $\mathrm{OH}(\mathrm{A})+\mathrm{Ar}$

QCT calculations by C.J. Eyles, H. Chadwick and F.J. Aoiz QM and new PES by J. Kłos and M.H. Alexander

Mechanisms of depolarization

Complex trajectories seen at low Δj for $\mathrm{OH}(\mathrm{A})+\mathrm{Ar}$

QCT calculations by C.J. Eyles, H. Chadwick and F.J. Aoiz QM and new PES by J. Kłos and M.H. Alexander

Mechanisms of depolarization: opacity functions

$\mathrm{OH}(\mathrm{A})+\mathrm{Ar}$ and the role of $\mathrm{OH}(\mathrm{A})$-Ar complexes.

QM calculations by J. KIøs and C.J. Eyles
QM and new PES by J. Kłos and M.H. Alexander

Zeeman quantum beats

Collisional depolarization: Some conclusions.

- Less efficient at high N - angular momentum conservation.
- Attractive long-range interaction plays crucial role for $\mathrm{OH}(\mathrm{A})+\mathrm{Ar}$.
- Both elastic and inelastic depolarization are important.
- Depolarization efficiency relative to RET is very system dependent.
- For ${ }^{2} \Sigma^{+}$radicals S and I are spectators in the collision.
- The effects of \boldsymbol{S} and \boldsymbol{I} can be accommodated in QCT calculations.
- $\sigma_{d}^{(k)}$ are large for spin-rotation and hyperfine state-changing collisions.

The End

