
CLASSICAL MECHANICS: Worked examples

Michaelmas Term 2006

4 Lectures Prof M. Brouard

Lecture 1

EXAMPLE 1:

a) Velocity and acceleration as derivatives

Calculate the acceleration of a particle given its time dependent position:

Position : rx(t) = αt3

where α is a constant and r0 = 0 at t = 0.

Velocity : vx(t) =
drx

dt
= 3αt2

where v0 = 0.

Acceleration : ax(t) =
dvx

dt
= 6αt

EXAMPLE 2:

b) Position and velocity as integrals

Calculate the position of a particle given its time dependent acceleration:

Acceleration : ax(t)

(

≡
dvx

dt

)

= 6αt

vx(t) is obtained by integration 1

vx(t) =

∫

ax(t)dt =

∫

6αt dt = 3αt2 + constant

At t = 0 the velocity v0 = 0, therefore

Velocity : vx(t)

(

≡
drx

dt

)

= 3αt2

Finally, the time dependent position is

Position : rx(t) =

∫

vx(t) dt =

∫

3αt2dt = αt3

where we have assumed that r0 = 0.

1This is an example of a first order differential equation
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EXAMPLE 3:

Electrons, initially travelling at 2.4 × 106 ms−1 in the horizontal direc-
tion, enter a region between two horizontal charged plates of length 2 cm
where they experience an acceleration of 4 × 1014 ms−2, vertically up-
wards.

Find (a) the vertical position as they leave the region between the plates,
and (b) the angle at which they emerge from between the plates.

For motion along the x coordinate

+

-

y

x

e
-

v0,x

ax = 0

vx = v0x = 2.4 × 106 m s−1

rx = r0x + v0xt r0x = 0

rx = 0.02 m = 2.4 × 106t

t = 8.33 × 10−9 s

and along the y coordinate

ay = 4 × 1014 m s−2

vy = v0y + ayt v0y = 0

ry = r0y + 1
2
ayt

2 r0y = 0

Substituting for the time the electron spends between the plates

ry = 1
2
ayt

2 = 0.0139 m

For the angle at which the electrons depart

tan θ =
vy

vx

=
ayt

v0x

θ = 54.2o

EXAMPLE 4:

An object of mass m, dropped from height h, experiences a retarding
force due to air resistance of kv, where k is a constant.

Assuming that gravity exerts a constant acceleration, g, what is the ter-
minal velocity of the object, vT?

Acceleration:

a ≡
dv

dt
= g −

k

m
v

This differential equation can be solved by separating the variables, v
and t, and integrating:

mg

F -kvair =
∫

dv

g − k
m

v
=

∫

dt + constant

−
m

k
ln

(

g −
k

m
v

)

= t + constant

ln

(

g −
k

m
v

)

= −
k

m
t + constant′

When t = 0, v = 0

ln g = constant′

Therefore
v

t

vT

0

v =
mg

k

(

1 − e−
k

m
t
)

As t → ∞, v → vT

vT =
mg

k

How does the height of the particle vary with time?
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Lecture 2

EXAMPLE 5:

mm

v
before

A particle of mass m travelling at a velocity v hits a stationary particle
of the same mass and sticks to it. What is the final velocity, vf , of the
two particles after they collide and stick together?

Total initial momentum

pi = m1v1 + m2v2 = mv + 0 = mv

Total final momentum (after sticky collision)

pf = (m1 + m2) vf = 2 mvf

Conserving momentum

pi = pf

Hence

vf =
m

2m
v =

1

2
v

2m

v/2
after

This is an example of an inelastic collision, i.e. one in which kinetic
energy is not conserved.

EXAMPLE 6:

What constant force would be required to stop each of the following ob-
jects in 0.5 km: (a) a 150 g cricket ball moving at 40 m s−1, (b) a 13 g
bullet moving at 700 m s−1, (c) a 1500 kg car moving at 200 kmh−1, and
(d) a 1.8× 105 kg airliner moving at 2240 kmh−1? Neglect the effects of
gravity.

Use the work-energy theorem:

W = Fs = ∆K

Because the final kinetic energy is zero,

∆K = Kinitial = 1
2
mv2

i.e.

F =
mv2

2s

(a) 0.24 N

(b) 6.4 N

(c) 4.6 × 103 N

(d) 7.0 × 107 N

In this simple example, the force required scales with the kinetic energy
of the particles.
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EXAMPLE 7:

Two protons (H+), initially separated at large r and possessing initial
velocities v = 200m s−1, collide head-on. What is their separation of
closest approach?

-vv

H
+

H
+

V r( )

rr0

V=E=Ki

Assume that initially all the energy is kinetic energy, E = Ki, (since the
protons are separated to large r initially). Because both protons have
the same mass and speed we may write

Ki = E = 1
2
mv2

1 + 1
2
mv2

2 = mv2

As the particles approach, the potential energy increases according to
the equation

V (r) =
q2

4πǫ0r

and the kinetic energy decreases by the same amount (conservation of
energy). At the separation of closest approach, r0, both particles are
momentarily stationary and thus

E = V (r0) = mv2

r0 =
q2

4πǫ0mv2
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Lecture 3

EXAMPLE 8:

Someone stands on a platform, which rotates at 0.5 revolutions s−1. With
arms outstretched, they hold two 4 kg blocks at a distance of 1 m from
the axis of rotation, which passes through the centre of the person. They
then reduce the distance of the blocks to 0.5 m.

Assuming that the moment of inertia of the person and the platform
(excluding the blocks) is constant at 4 kgm2, (a) what is the new angular
velocity and (b) what is the change in kinetic energy?

(a) The moment of inertia of the system is initially

Ii = 4 + 2mr2
i = 12 kg m2

and finally

If = 4 + 2mr2
f = 6 kg m2

The initial angular frequency is ωi = 2πfi = π rad s−1

and thus, applying angular momentum conservation,

Iiωi = Ifωf

ωf = 2π rad s−1

(b) The initial and final kinetic energies are given by

Ki = 1
2
Iiω

2
i = 6π2 J

and
Kf = 1

2
Ifω

2
f = 12π2 J

Thus the change in kinetic energy is

∆K = Kf − Ki = 6π2 ≃ 60 J

Note that the increase in kinetic energy is supplied by the man doing
work in pulling the blocks inwards.

EXAMPLE 9:

A person stands on a stationary (but rotatable) platform with a spinning
bicycle wheel in their hands. The moment of inertia of the person and
the platform is Iw = 4 kgm2, and for the bicycle wheel it is Ib = 1 kgm2.
The angular velocity is 10 rad s−1 counterclockwise as viewed from above.

Explain what happens when the person turns the wheel upside down (as-
suming there are no external torques acting on the system).

Define the z-axis pointing vertically upwards. The initial angular mo-
mentum is therefore

li = +Ib ωb

where the plus is defined by the right hand rule.

In the absence of external torques

lf = li

li

Since the final angular momentum of the bicycle is −Ib ωb the platform
must rotate to conserve angular momentum.

lf = Iwωw − Ibωb

Equating the initial and final momenta one finds

ωw = + 2Ibωb/Iw = + 5 rad s−1

lf
lw

lb

where the + sign indicates that the platform plus the person rotate in
the counterclockwise direction (the + z direction).
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EXAMPLE 10:

A rocket of mass m is fired at 60o to the local vertical with an initial
speed v0 =

√

GM/R where M and R are the mass and radius of the
earth respectively. Show that its maximum distance from the earth’s
centre is 3R/2.

The solution uses both conservation of energy and angular momentum.
Initially, the angular momentum is

l ≃ mv0 sin 60R = m
√

GMR sin 60

and the kinetic energy is

K = 1
2
mv2

0 = GmM/2R

The total energy is therefore

E = K+V = K−GmM/R = −GmM/2R

60
o

v0

At the maximum height, r, the rocket is no longer moving radially out-
wards. However, to conserve angular momentum, it must still have
angular kinetic energy given by

Kang = l2/2I = 3mGMR/8r2

Thus the total energy at the maximum height is

E = V + Kang = −GmM/r + 3GmMR/8r2

Equating the two expressions for the total energy
yields

r

v

−
1

2R
= −

1

r
+

3R

8r2

4r2 − 8Rr + 3R2 = 0

r =
8R ± 4R

8
=

3

2
R or

1

2
R

The latter solution is unphysical!
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Lecture 4

EXAMPLE 11:

A mass of 100 g hangs at the end of a spring (which obeys Hooke’s Law).
When the mass is increased by another 100 g the spring extends a further
8 cm. What is the spring constant? (Assume that the acceleration due
to gravity is 9.8m s−2.)

Dx=0.08m

Because the mass is at equilibrium in both cases the net force on the
mass is zero, and we can write

F = 0 i.e. kx = mg

With extra mass added

F = 0 kx′ = k(x + 0.08) = 2mg

Subtracting the two expressions obtained before and after addition of
the extra mass gives

k =
mg

∆x
= 12.25 Nm−1

If the masses are pulled down a further 5 cm and then released, what
would be (i) the frequency of vibration, (ii) the maximum velocity of the
masses, and (iii) the maximum acceleration of the resulting motion.

Dx=0.05m

(i) From the definition of the frequency of a harmonic oscillator

ω =

√

k

µ
=

√

12.25

0.2
= 7.8 rad s−1

f =
1

2π
ω = 1.25 Hz

(ii) The velocity of the harmonic oscillator (the time derivative of the
position) is

v(t) = Aω cos (ωt + φ)

with A = 0.05m. This is a maximum (minimum) when cos(z) = ±1,
i.e. when z = 0, π,

vmax = ±0.05 ω = ±0.39 m s−1

Note that the position (displacement from equilibrium) is zero at this
time.

(iii) Similarly, the maximum acceleration is

amax = −Aω2 = ∓3.0 m s−2

which is obtained by taking the maximum in the time derivative of the
velocity.
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EXAMPLE 12:

Show that the function

x = αeiωt + βe−iωt (1)

is a solution of the differential equation describing a harmonic oscillator
of frequency ω:

d2x

dt2
= −ω2x

Comment on the relationship between the above equation for x and the
solution x = A sin (ωt + φ).

Taking the first and second time derivative of x one obtains

ẋ = iω(αeiωt − βe−iωt)

ẍ = i2ω2(αeiωt + βe−iωt)

The latter can be written
ẍ = −ω2x

and therefore equation (1) clearly satisfies the differential equation (it is
actually the general solution).

The link with the more familiar solution x = A sin (ωt + φ) can be es-
tablished using the fact that

e±iωt = cos ωt± i sin ωt

Substitution of this equation in the top expression for x yields

x = C cos ωt + D sin ωt (2)

with C = α+β and D = i(α−β). However, using standard trigonometry
x = A sin (ωt + φ) can be rewritten

x = A (sin ωt cos φ + cos ωt sin φ)

which is the same as equation (2) with C = A cos φ and D = A sin φ.

8


